
Cleared for public release

Colmena:
Steering Ensemble Simulations on HPC

Logan Ward ...and a big team at Argonne, UC, …

Data Science and Learning Division
Argonne National Laboratory
1 November 2021

2

Acknowledgements: The (growing!) team

Argonne: ExaLearn – Using AI with HPC
Yadu Babuji, Ben Blaiszik, Ryan Chard, Kyle Chard,
Ian Foster, Greg Pauloski, Ganesh Sivaraman,
Rajeev Thakur

Argonne: JCESR – Molecular modeling for batteries
Rajeev Assary, Larry Curtiss, Naveen Dandu,
Paul Redfern

MolSSI – Workflows for quantum chemistry
Lori A. Burns, Daniel Smith, Matt Welborn,
many other open-source contributors

PNNL: ExaLearn – Graph algorithms for learning
Sutanay Choudhury, Jenna Pope

BNL: ExaLearn – Optimal experimental design
Frank Alexander, Shantenu Jha, Kris Reyes, Li Tan,
Byung Jun, and more

Argonne ALCF – AI, Data and Simulation on HPC
Murali Emani, Alvaro Vazquez-Mayagoitia,
Venkat Vishnawath

3

Big Picture: Expanding Computational Campaigns to the ExaScale

Current

Knowledge

Improved

Knowledge

Generate

Tasks

Execute

Tasks

Human-in-the-Loop

Current Model: Humans steer HPC, HPC performs simulations

Current Model Won't Scale. Humans are slow and not getting any faster

Generate

Tasks

Execute

Tasks

Autonomous HPC

Electrolytes

Water Clusters

Better Batteries

Better Science

Our goal: HPC steering itself!

4

Parallelism makes steering on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies…

Wait for N tasks to complete,
then pick next batch

Pick new tasks as soon
as one completes

Maintain a task queue

↑ Most information per decision
↓ Least utilization

↓ Least information per decision
↑ Greatest utilization

Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk: You can build complicated steering with Colmena
…and that lets you do cool things.

Colmena: An overview

6

What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas…

– Submit a new simulation once another completes

– Retrain a model after 8 successful computations

– Allocate more nodes to inference after models finish training

and others are possible.

Solution: We need a way of programming agents to encode such policies

Event-triggered

Conditional logic

Resource management

7

Colmena is a wrapper over Exascale Workflow tools (e.g. Parsl!)

Programming Model: Task Queues

Primitive Units

queue.send_inputs(1)

result = queue.get_result()

Task Server:
- Dispatches work requests to compute
- Communicates results back to thinker

Backend: Parsl
- Supports most HPC and cloud services
- Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
- Future: Balsam, FuncX, RCT

Programming Model: Agents

class Thinker(BaseThinker):

@agent

def make_work(self):

self.queue.send_inputs(1)

8

Building a Colmena app: Defining the “tasks” and “thinker”

Key points:

1. Subclass the “BaseThinker” abstract class

2. Mark “agent” operations form the policy

3. Communicate with method server via queues

4. Communicate with other via Threading primitives

How does it work:

– “.run()” launches all agents

class Thinker(BaseThinker):

def __init__(self, queue):

super().__init__(queue)

self.remaining_guesses = 10

self.best_guess = None

self.best_result = inf

@result_processor(topic=‘simulate')

def consumer(self, result):

Update the best result, check for termination

if result.value < self.best_result:

self.best_result = result.value

self.best_guess = result.args[0]

self.remaining_guesses -= 1

if self.remaining_guesses == 0:

self.done.set()

@agent

def producer(self):

while not self.done.is_set():

Make a new guess

self.queues.send_inputs(self.best_guess,

method='task_generator', topic='generate’)

Get the result, push new task to queue

result = self.queues.get_result(topic='generate’)

self.queues.send_inputs(result.value,

9

Main effort: Defining the “tasks” and “thinker”

• Main steps:

1. Write methods as Python functions

2. Specify computational sources

3. Instantiate method server

• Launching the server:

– “.run()” launches server as a second process

– Main thread reads from queue, launches workflows

– Workflows end by writing results to queue

– Parsl distributes work, collects results

def target_function(x: float) -> float: return x ** 2

def task_generator(best_to_date: float) -> float:

from random import random
return best_to_date + random() - 0.5

config = Config(executors=[
HighThroughputExecutor(max_workers=4)])

doer = ParslTaskServer([target_function, task_generator],
server_queues, config)

doer.start()

Colmena and Molecular Design

11

What does our “active learning application” look like

12

What is the application behavior?

1. Start by running inference on all nodes.

2. Run simulations on all nodes

3. After 8 complete, switch nodes to training models

4. After training, re-task available nodes to inference

5. After inference, reallocate all nodes back to simulation

13

Did the application have good scientific performance? [Yes]

Found 10% more high-performing molecules with same allocation size

14

Where are the sources of underutilization in ours run?
Poor utilization due to long-tail, trailing NWChem tasks

NWChem are long compared to allocation walltime

Starting a new TF node takes minutes
Comparable in cost to inference tasks

15

Summary: Colmena is for deploying AI+Simulation HPC

Key points:

• AI will play an increasing role in
controlling campaigns of simulations

• Success will require deploying AI on HPC

• Colmena provides a Python library for building
applications to interleave simulation and AI workflows

– Simple, agent-based programming model

– Backed by performant workflow engines (Parsl!)

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena

Colmena

https://colmena.rtfd.io/
https://github.com/exalearn/colmena

