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Big Picture: Expanding Computational Campaigns to the ExaScale

Current Model: Humans steer HPC, HPC performs simulations
Current Model Won't Scale. Humans are slow and not getting any faster
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Our goal: HPC steering itself!




Parallelism makes steering on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies...
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Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk: You can build complicated steering with Colmena
...and that lets you do cool things.
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Colmena: An overview
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What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas...
— Submit a new simulation once another completes <

Event-triggered

— Retrain a model after 8 successful computations Conditional logic

— Allocate more nodes to inference after models finish training < Resource management

and others are possible.

Solution: We need a way of programming agents to encode such policies




Colmena is a wrapper over Exascale Workflow tools (e.g. Parsl!)
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Programming Model: Task Queues Task_ Server:
- Dispatches work requests to compute

# Primitive Units - Communicates results back to thinker

queue.send inputs (1)

result = queue.get result() Backend: Parsl _
= - Supports most HPC and cloud services
Programming Model: Agents - Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
class Thinker (BaseThinker) : - Future: Balsam, FuncX, RCT
@agent

def make work (self):
self.queue.send inputs (1)




Building a Colmena app: Defining the “tasks” and “thinker”

Key points:

1.

2
3.
4

Subclass the “BaseThinker” abstract class

Mark “agent” operations form the policy
Communicate with method server via queues
Communicate with other via Threading primitives

How does it work:

“.run()” launches all agents
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class Thinker(BaseThinker):

def __init_ (self, queue):
super().__init__ (queue)
self.remaining_guesses = 10
self.best_guess = None

self.best_result = inf

@result_processor(topic=‘simulate’)
def consumer(self, result):
# Update the best result, check for termination
if result.value < self.best_result:
self.best_result = result.value
self.best _guess = result.args[9]
self.remaining guesses -= 1
if self.remaining_guesses ==
self.done.set()

@agent
def producer(self):
while not self.done.is_set():
# Make a new guess
self.queues.send_inputs(self.best guess,
method="task_generator', topic='generate’)
# Get the result, push new task to queue

result = self.queues.get_result(topic='generate’)




Main effort: Defining the “tasks” and “thinker”

 Main steps:
1. Write methods as Python functions
2. Specify computational sources
3. Instantiate method server

e Launching the server:
— “.run()” launches server as a second process

def target function(x: float) -> float: return x ** 2
def task generator(best to date: float) -> float:

from random import random
return best to date + random() - 0.5

config = Config(executors=|
HighThroughputExecutor(max_workers=4)1])

doer = ParslTaskServer([target function, task generator],
server_queues, config)

— Main thread reads from queue, launches workflows

— Workflows end by writing results to queue
— Parsl distributes work, collects results

doer.start()




Colmena and Molecular Design

—
\ EXASCALE
( ) COMPUTING
\ PROJECT
S



What does our “active learning application” look like
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What is the application behavior?

1. Start by running inference on all nodes.
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Did the application have good scientific performance? [Yes]
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Where are the sources of underutilization in ours run?
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Starting a new TF node takes minutes
Comparable in cost to inference tasks
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Poor utilization due to long-tail, trailing NWChem tasks
NWChem are long compared to allocation walltime
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Summary: Colmena is for deploying Al+Simulation HPC

Key points: New Data

« Al will play an increasing role in
controlling campaigns of simulations

» Success will require deploying Al on HPC

e Colmena provides a Python library for building
applications to interleave simulation and Al workflows

— Simple, agent-based programming model
— Backed by performant workflow engines (Parsl!)

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena
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