Colmena:
Steering Ensemble Simulations on HPC

—-—
- \\) EXHSEREE
|) I COMPUTING

Cleared for public release \(\ PROJECT
-

Logan Ward ...and a big team at Argonne, UC, ...
Data Science and Learning Division

Argonne National Laboratory
1 November 2021

&, U.S. DEPARTMENT OF Office of

a g ENERGY Science

Acknowledgements: The (growing!) team

Argonne: ExalLearn — Using Al with HPC

Yadu Babuji, Ben Blaiszik, Ryan Chard, Kyle Chard,
lan Foster, Greg Pauloski, Ganesh Sivaraman,
Rajeev Thakur

Argonne: JCESR — Molecular modeling for batteries
Rajeev Assary, Larry Curtiss, Naveen Dandu,
Paul Redfern

MolSSI — Workflows for qguantum chemistry
Lori A. Burns, Daniel Smith, Matt Welborn,
many other open-source contributors

PNNL: ExaLearn — Graph algorithms for learning
Sutanay Choudhury, Jenna Pope

BNL: ExalLearn — Optimal experimental design
Frank Alexander, Shantenu Jha, Kris Reyes, Li Tan,
Byung Jun, and more

Argonne ALCF — Al, Data and Simulation on HPC
Murali Emani, Alvaro Vazquez-Mayagoitia,
Venkat Vishnawath

Big Picture: Expanding Computational Campaigns to the ExaScale

Current Model: Humans steer HPC, HPC performs simulations
Current Model Won't Scale. Humans are slow and not getting any faster

Human-in-the-Loop

Electrolytes
Generate
k\‘ Tasks

Current
= € | Knowledge
@

Better Batteries

Improved
Knowledge

F—a—=,
Generate Execute Better Science
Tasks Tasks I

=

Water Clusters

|
Autonomous HPC

Our goal: HPC steering itself!

Parallelism makes steering on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies...

100 100 100

oo | LLLLLLILLTALL I]

g 60 - S 60 A ‘ ‘ .5 60 4

= B ®

N 40 A E 40 A g 40 -

= 50 4 > 201 > 201

0 T T T 0 T T T T 0 T T
0 20 40 60 80 0O 20 40 60 80 0 20 40
Walltime (s) Walltime (s) Walltime (s)
Wait for N tasks to complete, Pick new tasks as soon Maintain a task queue
then pick next batch as one completes

1 Most information per decision * '(—ﬁgiég‘;odmiez‘g%gnper decision
| Least utilization

Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk: You can build complicated steering with Colmena
...and that lets you do cool things.

)
—_—
V[=J coveoTiRe

_ PPPPPPP

Colmena: An overview

—
\ EXASCALE
() COMPUTING
\ PROJECT
S

What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas...
— Submit a new simulation once another completes <

Event-triggered

— Retrain a model after 8 successful computations Conditional logic

— Allocate more nodes to inference after models finish training < Resource management

and others are possible.

Solution: We need a way of programming agents to encode such policies

Colmena is a wrapper over Exascale Workflow tools (e.g. Parsl!)

o r
§redis | &
Request » i_ Work
Result :m Result

Thinker Task Server Workers

Programming Model: Task Queues Task_ Server:
- Dispatches work requests to compute

Primitive Units - Communicates results back to thinker

queue.send inputs (1)

result = queue.get result() Backend: Parsl _
= - Supports most HPC and cloud services
Programming Model: Agents - Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
class Thinker (BaseThinker) : - Future: Balsam, FuncX, RCT
@agent

def make work (self):
self.queue.send inputs (1)

Building a Colmena app: Defining the “tasks” and “thinker”

Key points:

1.

2
3.
4

Subclass the “BaseThinker” abstract class

Mark “agent” operations form the policy
Communicate with method server via queues
Communicate with other via Threading primitives

How does it work:

“.run()” launches all agents

o \
\ EXASCALE
E (} P COMPUTING
\C PROJECT

class Thinker(BaseThinker):

def __init_ (self, queue):
super().__init__ (queue)
self.remaining_guesses = 10
self.best_guess = None

self.best_result = inf

@result_processor(topic=‘simulate’)
def consumer(self, result):
Update the best result, check for termination
if result.value < self.best_result:
self.best_result = result.value
self.best _guess = result.args[9]
self.remaining guesses -= 1
if self.remaining_guesses ==
self.done.set()

@agent
def producer(self):
while not self.done.is_set():
Make a new guess
self.queues.send_inputs(self.best guess,
method="task_generator', topic='generate’)
Get the result, push new task to queue

result = self.queues.get_result(topic='generate’)

Main effort: Defining the “tasks” and “thinker”

 Main steps:
1. Write methods as Python functions
2. Specify computational sources
3. Instantiate method server

e Launching the server:
— “.run()” launches server as a second process

def target function(x: float) -> float: return x ** 2
def task generator(best to date: float) -> float:

from random import random
return best to date + random() - 0.5

config = Config(executors=|
HighThroughputExecutor(max_workers=4)1])

doer = ParslTaskServer([target function, task generator],
server_queues, config)

— Main thread reads from queue, launches workflows

— Workflows end by writing results to queue
— Parsl distributes work, collects results

doer.start()

Colmena and Molecular Design

—
\ EXASCALE
() COMPUTING
\ PROJECT
S

What does our “active learning application” look like

g o T S EE— EE S e BN B SN EEE BN B EEE EEE B MEE EEE B B MEE MEE B e MEm EEm G MEm MEm S SEe SEe EEm e MEm MEm M M SEe S G GEe Mmm S e MEe Mmm S e Sme S S e e e ey

I
|

Thinker

1
\

S S

Task

%ﬁﬁLMOlecule Queue

Record i“;l::l‘ Model Library

Server

ML-ScorEEl ML-R_ecor'der‘El/

What is the application behavior?

1. Start by running inference on all nodes.

$ 1000 - =
wn 2. Run simulations on all nodes
--D-.. 800 = , —
© 3. After 8 complete, switch nodes to training models
Q
TS 600 -
O
g 400 - 4. After training, re-task available nodes to inference
< |
wn 5. After inference, reallocate all nodes back to simulation
@ 200 -
g 0 - | B -f'"1: _.‘, .-". J';i, 4", 4"1J 4"‘
0 1 2 3 4 5 6

Time (h)

~—
\ EXASCALE
() COMPUTING
\ EEEEEEE
1

12

Did the application have good scientific performance? [Yes]

197 —— no-retrain 1
> 100 4 random
LN _
o 80 - update-8 /j,.,,—f
60 - : pra
clu_ 40 4 || o
Tl ™ ¢
= 20 -+ :
0o | -L————
1 1 1 1 1 1 1
0 1 2 3 4 5 6
Found 10% more high-performing molecules with same allocation size
E(CP s

Where are the sources of underutilization in ours run?

©
O 1000 -
wn
= 500 -
©
9
© 600 -
()
O
— 400 -
<C
$ 200 -
=
@)
= 0 -

Starting a new TF node takes minutes
Comparable in cost to inference tasks

—_—
\ EXASCALE
() COMPUTING
\ EEEEEEE
1

Poor utilization due to long-tail, trailing NWChem tasks
NWChem are long compared to allocation walltime

' l

14

Summary: Colmena is for deploying Al+Simulation HPC

Key points: New Data

« Al will play an increasing role in
controlling campaigns of simulations

» Success will require deploying Al on HPC

e Colmena provides a Python library for building
applications to interleave simulation and Al workflows

— Simple, agent-based programming model
— Backed by performant workflow engines (Parsl!)

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena

https://colmena.rtfd.io/
https://github.com/exalearn/colmena

