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Big Picture: Expanding Computational Campaigns to the ExaScale
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Our goal: HPC steering itself!
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Parallelism makes steering on HPC difficult

Root Problem: Sequential search is impractical, we must run >1 simulation at once

Consider a few parallel strategies…

Wait for N tasks to complete,
then pick next batch

Pick new tasks as soon
as one completes

Maintain a task queue

↑ Most information per decision
↓ Least utilization

↓ Least information per decision
↑ Greatest utilization

Bottom Line: Active learning on HPC requires intelligent policies

Today’s Talk: You can build complicated steering with Colmena
…and that lets you do cool things.



Colmena: An overview
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What kind of “intelligence” goes into steering applications

Observation: We have many policy ideas…

– Submit a new simulation once another completes

– Retrain a model after 8 successful computations

– Allocate more nodes to inference after models finish training

and others are possible.

Solution: We need a way of programming agents to encode such policies

Event-triggered

Conditional logic

Resource management
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Colmena is a wrapper over Exascale Workflow tools (e.g. Parsl!)

Programming Model: Task Queues

# Primitive Units

queue.send_inputs(1)

result = queue.get_result()

Task Server:
- Dispatches work requests to compute
- Communicates results back to thinker

Backend: Parsl
- Supports most HPC and cloud services
- Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
- Future: Balsam, FuncX, RCT

Programming Model: Agents

class Thinker(BaseThinker):

@agent

def make_work(self):

self.queue.send_inputs(1)
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Building a Colmena app: Defining the “tasks” and “thinker” 

Key points:

1. Subclass the “BaseThinker” abstract class

2. Mark “agent” operations form the policy

3. Communicate with method server via queues

4. Communicate with other via Threading primitives 

How does it work:

– “.run()” launches all agents

class Thinker(BaseThinker):

def __init__(self, queue): 

super().__init__(queue)

self.remaining_guesses = 10

self.best_guess = None

self.best_result = inf

@result_processor(topic=‘simulate')

def consumer(self, result): 

# Update the best result, check for termination

if result.value < self.best_result: 

self.best_result = result.value

self.best_guess = result.args[0]

self.remaining_guesses -= 1

if self.remaining_guesses == 0:

self.done.set()

@agent

def producer(self): 

while not self.done.is_set():

# Make a new guess

self.queues.send_inputs(self.best_guess, 

method='task_generator', topic='generate’)

# Get the result, push new task to queue

result = self.queues.get_result(topic='generate’) 

self.queues.send_inputs(result.value, 
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Main effort: Defining the “tasks” and “thinker” 

• Main steps:

1. Write methods as Python functions

2. Specify computational sources 

3. Instantiate method server

• Launching the server:

– “.run()” launches server as a second process

– Main thread reads from queue, launches workflows

– Workflows end by writing results to queue

– Parsl distributes work, collects results

def target_function(x: float) -> float: return x ** 2

def task_generator(best_to_date: float) -> float:

from random import random
return best_to_date + random() - 0.5

config = Config(executors=[
HighThroughputExecutor(max_workers=4)])

doer = ParslTaskServer([target_function, task_generator],
server_queues, config)

doer.start()



Colmena and Molecular Design
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What does our “active learning application” look like
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What is the application behavior? 

1. Start by running inference on all nodes.

2. Run simulations on all nodes

3. After 8 complete, switch nodes to training models

4. After training, re-task available nodes to inference

5. After inference, reallocate all nodes back to simulation
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Did the application have good scientific performance? [Yes]

Found 10% more high-performing molecules with same allocation size
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Where are the sources of underutilization in ours run?
Poor utilization due to long-tail, trailing NWChem tasks

NWChem are long compared to allocation walltime

Starting a new TF node takes minutes
Comparable in cost to inference tasks
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Summary: Colmena is for deploying AI+Simulation HPC 

Key points:

• AI will play an increasing role in 
controlling campaigns of simulations

• Success will require deploying AI on HPC

• Colmena provides a Python library for building
applications to interleave simulation and AI workflows

– Simple, agent-based programming model

– Backed by performant workflow engines (Parsl!)

See also: https://colmena.rtfd.io/ , https://github.com/exalearn/colmena
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