UNIVERSITY OF

5) NOTRE DAME

Resource Management
for Dynamic Function Distribution
with Parsl and Work Queue

Douglas Thain, Ben Tovar,
Thanh Son Phung, and Barry Sly-Delgado
Parsl / FuncX Workshop, 27 October 2021

CCTools -

Parsl + Work Queue for Scalable Apps

http://parsl-project.org
r
Parsl

Productive parallel programming in Python

Use Pars! to create parallel programs comprised of Python functions and external components. Execute Pars! programs
on any compute resource from laptops to supercomputers.

S python
Q! L

TryErsI Install Parsl Contribute

Use Binder to run Pars! tutorials in hosted Pip install Pars! o checkout Parsl from View, fork, and t
Jupyter notebooks. No installation source. Source Pars! on GitHub.
red!

Powerful Pythonic Workflow
Programming Model

e open

http://ccl.cse.nd.edu

Work Queue: A Scalable Master/Worker Framework

Work Queue is a framework for building large master-worker applications that Wo r k Q ueue

span thousands of machines drawn from clusters, clouds, and grids. Work
Queue applications are written in C, Perl, or Python using a simple API that
allows users to define tasks, submit them to the queue, and wait for
completion. Tasks are executed by a standard worker process that can run on
any available machine. Each worker calls home to the master process,
arranges for data transfer, and executes the tasks. The system handles a wide
variety of failures, allowing for dynamically scalable and robust applications.

‘Work Queue has been used to write applications that scale from a handful of
workstations up to tens of thousands of cores running on supercampu[ers
Examples include Lobster,
Weighted Ensemble, the SAND genome assgmblg the Makeflow workflow engine, and the All-Pairs and Wavefront abstractions.
The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing, distributed computing, and
cyberinfrastructure at the University of Notre Dame, the University of Arizona, and the University of Wisconsin - Eau Claire.

For More Information

Work Queue User's Manual

Work Queue API (C | Perl | Python)

Work Queue Example Program (C | Perl | Python)
Work Queue Status Display

Download Work Queue

Getting Help with Work Queue

) DISCLECTURE 5B Part 1

Scalable, Portable, Robust
Distributed Execution

4

CCTools

CCTools

System Architecture

Thousands of Workers
on National Cyberinfrastructure

Generate Funcs [Pars| Python Interface } HTCondor, PBS, SLURM, Amazon,
< > Blue Waters, OSG, XSEDE...
Order Functions | Parsl Data Flow Kernel
(Futures) : TI'_L :
Functions -> Tasks Parsl / WQ Executor

4 rl |7 N
Schedule Tasks | Work Queue Manager —

\

A —— Task — B
Execute Tasks

Remotely
on Local Disk

Configuring Parsl + WQ

import parsl

from parsl.executors import WorkQueueExecutor

config = parsl.config.Config(
executors=[

WorkQueueExecutor(
label="wq-parsl-app"
port=9123,
project_name="wq-parsl-app"”,
shared_fs=False,

full_debug = True,
) 1)

eoe M <

Pars|

Quickstart

Parsl tutorial

User guide

FAQ
© API Reference guide
Core
Configuration
Channels
Data management
B Executors
parsl.executors.base.ParslExecutor
parsl.executors.status_handling.BlockProvid
parsl.executors.ThreadPoolExecutor

8 & parsl.readthedocs.io e © 0 +

Docs » API Reference guide » parsl.executors.WorkQueueExecutor © Edit on GitHub

parsl.executors.WorkQueueExecutor

class parsl Wor (label: str = 'WorkQ ', provider:
parsl.| pmwders provider_ hn e. i ider = Lot i -alCh {}, script_dir=None,
org/user_bui), cmd_timeout=30,
init_blocks=1, launcl , fail_on_any=False), max_blocks=1, min_blocks:
move_files=None, nodes_per_block=1, parallelism=1, worker), working_dir: str = ', managed: bou
project_name: Optional[str] = None, project_password.file: Opti = None, address: Optionall:
port: int = 0, env: Optional[Dict] = None, shared_fs: bool = False, storage_access:
Optional[List[parsl.data_provider.staging.Staging]] = None, use_cache: bool = False, source: bool = False, pack: bool
= False, extra_pkgs: Optional[List[str]] = None, autolabel: bool = False, autolabel_window: int = 1, autocategory:
bool = True, max_retries: Optional[int] = 1, init_command: str = ", worker_options: str = ", full_debug: bool = True,
worker_executable: str = 'work_queue_worker) [source]

rue,
=None,

Executor to use Work Queue batch system

The WorkQueueExecutor system utilizes the Work Queue framework to efficiently delegate
Pars| apps to remote machines in clusters and grids using a fault-tolerant system. Users can run
the work_queue_worker program on remote machines to connect to the WorkQueueExecutor,
and Parsl apps will then be sent out to these machines for execution and retrieval.

parsl.executors.WorkQueueExecutor
parsl.executors. ExtremeScaleExecutor
parsl.executors.LowLatencyExecutor
parsl.executors.FluxExecutor
parsl.executors.swift_tTurbineExecutor

Launchers

Providers

Exceptions

Internal

Noualanar dnrimantatinn

& Read the Docs

label (str) - A human readable label for the executor, unique with respect to other Work
Queue master programs. Default is “WorkQueueExecutor”.

working_dir (str) - Location for Parsl to perform app delegation to the Work Queue system.
Defaults to current directory.

managed (bool) - Whether this executor is managed by the DFK or externally handled.
Default is True (managed by DFK).

project_name (str) - If a project_name is given, then Work Queue will periodically report its
status and performance back to the global WQ catalog, which can be viewed here:
http://ccl.cse.nd.edu/software/workqueue/status Default is None. Overrides address.

project_password_file (str) - Optional password file for the work queue project. Default is
None.

CTools

(=}

_eo—
T
Common Challenges -

Two common problems of scaling up:

e \What resources should be assigned to a function call?
e \What software dependencies does this function need?

How can we solve these problems automatically at
runtime, without requiring the user to make advance
declarations?

CCTools

Packing Functions Into Manycore Nodes

Allocate 2GB per Function A?

N\
I 1\
Python App Fy : : ‘;‘
I I |:
Parsl DFK : : : :
I 1!
Work Queue Manager - : |l :
I [
I 1!
\ ;11
;|
s
Ve

12 cores and 12 GB RAM
. 4

CCTools

Packing Functions Into Manycore Nodes

Allocate 4GB per Function A?

/’ h N
I LAY
Python App Fa | Work Queue Worker | M
I p 1!
Pars| DFK : : : :
I p 1!
Work Queue Manager - I Fa Fa Fa Il :
| [
I p 1!
\ 7 1!
N 7 1
o,
PV

12 cores and 12 GB RAM
. 4

CCTools

Packing Functions Into Manycore Nodes

Mix Function A and Function B?

N\
I ‘\\
Python App Fa | Work Queue Worker | M
I 1!
Pars| DFK : : : :
I 1!
Work Queue Manager - : |l :
| (.
I 1!
\ 7 1!
;1
2
PV

12 cores and 12 GB RAM
. 4

CCTools

How to measure a single function call?

LFM - Lightweight Function Monitor
Python Interpreter ...

-
,,’ ——————————— S

[

fork cow) | ' \

LFM I —_——— e === —— |

L LFM P

l L e I

function I N e il {1

< - : function I
: 1] '"-——-————————

import A import B I|: F———— - —-——— :
K / Resource Usage \I\' I importA | | importB |
L e e e B e e

y3
N

Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuiji, TJ Dasso, Zoe Surma, Kyle Chard, lan Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International
Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088 N

CCTools

Lightweight Function Monitors (LFMs)

Activate LFMs with an import and the @monitored keyword

In [7]: from resource monitor import monitored
from time import sleep

In [12]: | # declare a function to be monitored with the @monitored() decorator

@monitored()
def my function 1(wait for):
sleep(wait for)
return 'waitied for {} seconds'.format(wait for)

(result, resources) = my function 1(.1)
print(result, '{}'.format({'memory': resources['memory'], 'wall time': resources['wall time']}))

waitied for 0.1 seconds {'memory': 49, 'wall time': 101689}

CCTools

Example: Colmena-XTB Application

4 N
Application: Ixtb-run.sh Worker Node 1
XTB) ’
. 3 O o O """ ‘; Thanh
4 @agent oo : Son Phung

def producer(self):

Application Framework:
@agent

KI' asks: \

Colmena def consumer(self): A s ’
\ 1 Are of two types:
(4 @ Worker Node 2 inference and
Workflow Manager: }:)‘ ________________ simulation
Parsl O_, \ e Display significant
- ! O i differences in
4 ! resource consumption
Scheduler: | | [N » |/ _— | ‘" N K /
Work Queue
N J

Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are Created Equal: Adaptive Resource Allocation
for Hetergeneous Tasks in Dynamic Workflows", WORKS Workshop at Supercomputing 2021. “~«g~

Memory Consumption of Colmena-XTB’s

Tasks

Memory consumption over time

Buckets progressing over time

30 T = 20 , = —‘ Bucket 1
an ® s \ F . —— Bucket 2
. 7—} Peak
25| S : . A | o
o o . . — " ption
" . ol = .
,‘R 20 | . . ® 00 - < 20 X} .. . % ..
8 et . . ; w ®: = Ll g . 2 i L]
N . 9 . .
>15 . o 51s '
] . N . : .
g . . :0. . i 2 9 i .-)]
= 101 952 % '%O... oo’ . ¢ 10 .o - .
» w5 @ & © ° L ® ® %o o . '.'.-.. o« ol .
v"o\ . :: T ':‘:' * 0% H ‘.. . S e (3 ""’". -':- ‘e ; - .". 3
5 b ° 3 ., .. < f..o ::" 5 2 N ¢
¢ e e Y é P o:n O 4
0
0 50 100 150 200 ° 2 B0 ow B 250
time flow

Problem

Tasks can consume as low as 2

Solution

CCTools

Bucket tasks with similar consumption

GBs or as high as 30 GBs of RAM! and allocate new tasks accordingly.

K-means Bucketing

Buckets progressing over time

30—

Memory _
GBs) %°

10—

Time Flow
13t allocation 2"d allocation
Task T
allocate If fails, [Bucketz] If fails,
o blue line allocate orange line allocate

CCTools

Bucket 1

Bucket 2

® Task’s
consumption

last allocation
[Whole

Machine] -y

Run Time Dependency Management

Manager Environment

\
[I\

| I A
[: 1\
I : 11
I | 11
] : 1l
| : 1l
| \ 1l
| 7 11
[7 1
[<
]
\

How do we ensure that all the tasks get a consistent,
minimal environment matching the manager?

Poncho Toolkit

The Poncho Toolkit allows users to create
and deploy self contained Python
environments at user level in arbitrary

distributed systems via a JSON
specification file.

poncho _package analyze
poncho package create
poncho_package run

https://cctools.readthedocs.io/en/latest/poncho/

N

CCTools

"conda"{
"channels":[
"defaults",
"conda-forge"

]

"packages"[

"ndcctools=7.3.0",

"pars|=1.1.0",

]
)
n Ipll: [

"topcoffea"

]
llgitll: {

"DATA_DIR": {

"remote": "http://.../repo.git"

}

https://cctools.readthedocs.io/en/latest/poncho/

Run Time Dependency Management

Manager Environment

\

\ [:

Python App Fa : : :

I I I

Parsl DFK I I :
I I

I

Work Queue Manager : : |

I

| ‘ ,

poncho JSON _

package Specificaton | T~ T TT T

analye

b

_________/

Package per Task

Activate
E work queue worker environment

Environment Tarball N N
poncho_package create » l\l
|
1 1
Conda environment 11
Pip packages (I
Cloned repos 1
Fetched Files |1
This required modest changes to the : :
Pars|+WQ Executor to wrap each task 7 1
invocation with additional files and /
P g

commands.

Package per Worker

Activate
environment

poncho_package run once for
whole

worker.

Environment Tarball /’ ‘ \\
»

JSON Specification

poncho_package create

Conda environment
Pip packages
Cloned repos
Fetched Files

This requires modest changes to whatever method
is used to deploy workers on the batch system, to
modify the worker command and input files.

— e - E—— E—— E—— S S o

-

First Look: Orders of Magnitude

poncho_package create

Application No Versions Specified All Versions Specified
TopEFT 2940s 170s
SHADHO 257s 159s

poncho_package_run

Application Size compressed Size unpacked Unpack Time
SHADHO 438MB 1.4GB 12s
TopEFT 594MB 2GB 21s
Colmena-XTB 1.4GB 4.8GB 46s

Do we really need all this code just to run a function? (maybe)
Understanding the dependencies actually used by a function
execution, and how they evolve over time.

Extending dependency detection to other kinds of resources:
databases, executables, file system resources...

Closing the loop on application configuration: capture
discovered resource configurations from multiple runs and use
to predict future runs.

Conveying known application categories from top to bottom
through software stacks.

End to End Integration Testing

All workflows
Showing runs from all workflows

Q Filter workflow runs

End-to-end daily test that simply installs
parsl+workqueue and runs a trivial example out
ocouy . of the manual to see if it gets the right result.

341 workflow runs Event ~ Status v Branch ~ Actor v

@ Cl-Daily B2daysago ...
Cl-Daily #159: Scheduled © 3maas
@ drop conda-pack from coffea.sh (comes fr... . B2daysago ...
main
Cl-Daily #158: Commit 7f26ea3 pushed by btovar @ 4m 43s

conda-forge dropped support for python 3.6,
© :f::;e#?gll:::zroszercscl,edp:t:r‘;::boysi;?ackf... oS g’if;yi:“ - reSUItlng |n attemptS tO |nSta” tak|ng forever

o crom " while conda tries to solve an unsolvable
Cl-Daily #156: Scheduled @ 30m 255 dependency prOblem|

© Cl-Weekly Badaysago ...
Cl-Weekly #25: Scheduled & 30m 0s

© Cl-Daily Bladaysago ...
Cl-Daily #155: Scheduled & 30m 27s

For More Information...

e0e < o © & cetools readthedocs.io [

CCTools Documentation

Docs » Software » Work Queue

Quick Start:
conda install -c conda-forge python=3.9 ndcctools parsl|

About

Installation

Getting Help
CCTools Documentation

https.//cctools.readthedocs.io o
https://ccl.cse.nd.edu/software/workqueue =g

Building a Work QuiiIEE LSty
Getting Help

Running a Work Qu
Writing a Work Qud # CCTools Documentation
Program

o CD

" Project Names and {JRVSTROWSNS
Server

JX Language
Managing Resource S SRR VIS ADouE
Recommended Prac

Parrot Installation

Logging facilities Chirp .
btov d.ed tphung@nd.edu
a r n - e u " Further Information g poncho Nokefion

Copyright Commands Work Queue
Example JX Language
Specification File © Resource Monitor
Overview
Running resource_monitor
Output Format

Specifying Resource Limits
Snapshots

Integration with other CCTools
Monitoring with Condor

Monitoring functions in python

Further Information

dthain@nd.edu T e

ece M < © & cetools.readthedocs.o e €]

Work Queue User's Manual

+ @

=2

Docs » Software » Poncho

Poncho Packaging Utilities

G
©

& cctools readthedocs.io 7 (€]

Docs » Software » Resource Monitor

Resource Monitor User's Manual

Overview

resource_monitor is a tool to monitor the computational resources used by
the process created by the command given as an argument, and all its
descendants. The monitor works indirectly, that is, by observing how the
environment changed while a process was running, therefore all the
information reported should be considered just as an estimate (this is in
contrast with direct methods, such as ptrace). It works on Linux, and it can be
used in three ways:

« Stand alone mode, directly calling the resource_nonitor executable.

« Activating the monitoring modes of makeflow and work queue
applications.

« Asapython module to monitor single function evaluations.

resource_monitor generates up to three log files: a JSON encoded summary
file with the maximum values of resource used and the time they occurred, a
time-series that shows the resources used at given time intervals, and a list of
files that were opened during execution.

Additionally, resource_monitor may be set to produce measurement _
snapshots according to events in some files (e.g., when a file is created,
deleted, or a regular expression pattern appears in the file). Maximum

https://cctools.readthedocs.io
http://ccl.cse.nd.edu/software/workqueue

