Jiobus @ fabs @ SUSTech

Distributed Dataflows with Pars|
+ funcX: a FaaS based Approach

Zhuozhao Li
Assistant Professor

Southern University of Science and Technology

o e
s parsl o4

/ X

he needs for distributed dataflows

Dependency-based tasks Phenomenal growth of Distributed data and
data volumes and compute
velocities

Real images

Synthetic images

ABEP)
<dr'm

»

Parsl: Enabling composition and dynamic dataflow graph

@python_app
def pi(num_points):

from random import random
inside = @
for 1 in range(num_points):
X, ¥ = random(), random() # Drop a random point in the box.
if x**2 + y**2 < 1: # Count points within the circle.
inside += 1

return (inside*4 / num_points)

App that computes the mean of three wvalues

@python_app
def mean{a, b, c):

return (a + b + ¢) / 3

Estimate three wvalues for pi
a, b, c|= pi(1e**6), pi(10**6), pi(10**6)

Compute the mean of the three estimates

mean_pi =|mean{a, b, c)

Print the results

print{"Average: {:.5F}".format({mean_pi.result()))

FuncX: A federated FaaS ecosystem

|
Distributed endpoint model |

repo2docker
Execution |
e Lightweight agent deployed by users f(x), ... * f(x) g(x) |
[1,2,3...n] " | h(x) k(x) |
 Dynamically provisions resources, ===
|

deploys containers, and executes
functions

Turn any machine into a function
serving endpoint

A new funcX executor for Parsl| (prototype)

| m B s e
~ 5~ T~
‘

. _ o . Programming
e .
#* " Parsl: Python Pervasive Scripting Library interface

: 5 s 2
x funcX Service

v‘ v‘ Execution
engine
{ XEndpoint 1] { x Endpoint N

A new funcX executor for Pars| (prototype)

from parsl.executors import FuncXExecutor

fX_config = Config(
executors=|
FuncXExecutor(
Label="funcX",
worker_debug=True,
endpoints=['870b1d5d-28b0-4962-877f-886d96d4d785"],

I,

)
parsl.load(fx_config)

Task distribution across endpoints

[
##" Parsl: Python Pervasive Scripting Library

r——-=-=-=-="-=--=-=-=-="-=-==-=-=-=====)
: Task Distribution :
e -
funcX Service
4 " A 4
{ x Endpoint 1] { x Endpoint N

Task distribution across endpoints

e Allow distributing tasks to specific endpoints manually

o Decorators

@python_app(...,|parsl_resource _specification={'endpoints': [epl, ep2]})

def foo():

o On task invocations

foo(*args, **kwargs,

* Advanced topics

parsl _resource specification={'endpoints’:

[epl, ep2]})

o Automatically and transparently distribute tasks to their most appropriate endpoints
o E.g., where data is located, resources are available, or compute is the most efficient
o Extensible to customized task distributing algorithms

Task and endpoint status reports are needed!

o Endpoint status def get_endpoint_status(self, endpoint_uuid):
liveness Get the status reports for an endpoint.
O |ve.ness Returns
o Available workers .
o Walltime dict | |
oQueue length .. The details of the endpoint's stats
o etc.
* Task status It is extremely challenging to report and
o Task utilization store task status across distributed

o Task completion time

. endpoints and at scale!
o Data size

9

Data management

* Inter-endpoint transfers
o E.g., Globus

* Intra-endpoint transfers W& i

o E.g., Shared file system
o In-memory store, e.g., Redis clusters d-
o Other approaches, e.g., RDMA re ls

* Data proxy --- transparent, uniform interface

Managing environments across endpoints

* Lightweight function monitor (IPDPS’21, collaborative work with
Douglas Thain’s lab at ND)
o Automatically detect the dependencies of functions
o Package conda environments
o Distribute environments to workers *

dOCker SHIFTER

* Alternatives: E.g., container service for funcX
* Dynamically build containers for funcX functions for different endpoints (e.g.,

(e
S

Docker, singularity)

Distributed Dataflows with Parsl| + funcX

[
#*" Parsl: Python Pervasive Scripting Library

Benefits

* Enable one to easily compose a distributed dataflow across different
endpoints, without worrying too much about the task distribution

 Compute on cluster resources from one’s laptop
e Portable dataflows

* The potential to use distributed computing resources to avoid high queuing
time of large jobs

* More...

Thanks!

Questions!

Suggestions!

Potential use cases!

