
Distributed statistical inference

with pyhf powered by funcX

Matthew Feickert

 matthew.feickert@cern.ch
 @HEPfeickert

 matthewfeickert

Lightning talks
Parsl & funcX Fest 2021

October 27th, 2021

1

mailto:matthew.feickert@cern.ch
https://twitter.com/HEPfeickert
https://github.com/matthewfeickert
https://parsl-project.org/parslfest2021.html

Quick Note

For a longer version of this talk, check out our talk from SciPy 2021

1

https://youtu.be/rwaxVDWZS8A
https://youtu.be/rwaxVDWZS8A

Lukas Heinrich

CERN

Matthew Feickert

University of Illinois
Urbana-Champaign

Giordon Stark

UCSC SCIPP

Ben Galewsky

National Center for
Supercomputing

Applications/Illinois

pyhf Core Developers funcX Developer

Project team

2

https://github.com/lukasheinrich
https://www.matthewfeickert.com/
https://github.com/kratsg
https://bengalewsky.github.io/about/

LHC ATLAS

We're high energy particle physicists

3

https://home.cern/science/accelerators/large-hadron-collider
https://atlas.cern/
https://twitter.com/HEPfeickert/status/1269406145858469891?s=20
https://twitter.com/HEPfeickert/status/1269406145858469891?s=20
https://twitter.com/HEPfeickert/status/1269406145858469891?s=20

Search for new physics Make precision measurements
Provide constraints on models

through setting best limits

Goals of physics analysis at the LHC

All require building statistical models and �tting models to data to perform statistical inference

Model complexity can be huge for complicated searches

Problem: Time to �t can be many hours

pyhf Goal: Empower analysts with fast �ts and expressive models 4

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-27/
http://cms-results.web.cern.ch/cms-results/public-results/superseded/HIG-19-004/index.html
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-31/

JOSSJOSS 10.21105/joss.0282310.21105/joss.02823

Pure Python implementation of ubiquitous high energy physics (HEP)
statistical model speci�cation for multi-bin histogram-based analysis

Supports multiple computational backends and optimizers (defaults of NumPy
and SciPy)

JAX, TensorFlow, and PyTorch backends can leverage hardware acceleration
(GPUs, TPUs) and automatic differentiation

Possible to outperform traditional C++ implementations that are default in
HEP

Ways to learn more:

pyhf: pure-Python HEP statistical models

5

https://pyhf.github.io/pyhf-tutorial/
https://doi.org/10.21105/joss.02823
https://doi.org/10.21105/joss.02823
https://youtu.be/FrH9s3eB6fU

HPC facilities are more commonly available for
use in HEP and provide an opportunity to
ef�ciently perform statistical inference of LHC
data

Can pose problems with orchestration and
ef�cient scheduling

Want to leverage pyhf hardware accelerated

backends at HPC sites for real analysis speedup

Reduce �tting time from hours to minutes

Idea: Deploy a pyhf based (�tting) Function as a

Service to HPC centers

Example use cases:

Large scale ensemble �ts for statistical combinations

Large dimensional scans of theory parameter space (e.g.
Phenomenological Minimal Supersymmetric Standard Model
scans)

Pseudo-experiment generation ("toys")

Model that takes over an hour with traditional C++
framework �t in under 1 minute with pyhf on local
GPU

(Fitting) FaaS with pyhf on HPCs

6

HPC facilities are more commonly available for
use in HEP and provide an opportunity to
ef�ciently perform statistical inference of LHC
data

Can pose problems with orchestration and
ef�cient scheduling

Want to leverage pyhf hardware accelerated

backends at HPC sites for real analysis speedup

Reduce �tting time from hours to minutes

Idea: Deploy a pyhf based (�tting) Function as a

Service to HPC centers

Example use cases:

Large scale ensemble �ts for statistical combinations

Large dimensional scans of theory parameter space (e.g.
Phenomenological Minimal Supersymmetric Standard Model
scans)

Pseudo-experiment generation ("toys")

Integrate with funcX for fun and pro�t!

(Fitting) FaaS with pyhf on HPCs

7

https://funcx.readthedocs.io/

import json

from time import sleep

import pyhf

from funcx.sdk.client import FuncXClient

from pyhf.contrib.utils import download

def prepare_workspace(data, backend):

 import pyhf

 pyhf.set_backend(backend)

 return pyhf.Workspace(data)

def infer_hypotest(workspace, metadata, patches, backend):

 import time

 import pyhf

 pyhf.set_backend(backend)

 tick = time.time()

 model = workspace.model(...)

 data = workspace.data(model)

 test_poi = 1.0

 return {

 "metadata": metadata,

 "cls_obs": float(

 pyhf.infer.hypotest(test_poi, data, model, test_stat="qtilde")

),

 "fit-time": time.time() - tick,

 }

...

As the analyst user, de�ne

the functions that you

want the funcX endpoint

to execute

These are run as

individual jobs and so

require all dependencies

of the function to be
de�ned inside the
function

Execution with funcX: De�ne user functions

8

...

def main(args):

 ...

 # Initialize funcX client

 fxc = FuncXClient()

 fxc.max_requests = 200

 with open("endpoint_id.txt") as endpoint_file:

 pyhf_endpoint = str(endpoint_file.read().rstrip())

 # register functions

 prepare_func = fxc.register_function(prepare_workspace)

 # execute background only workspace

 bkgonly_workspace = json.load(bkgonly_json)

 prepare_task = fxc.run(

 bkgonly_workspace, backend, endpoint_id=pyhf_endpoint, function_id=prepare_func

)

 # retrieve function execution output

 workspace = None

 while not workspace:

 try:

 workspace = fxc.get_result(prepare_task)

 except Exception as excep:

 print(f"prepare: {excep}")

 sleep(10)

...

With the user functions
de�ned, they can then be
registered with the funcX client
locally

fx.register_function(...)

The local funcX client can then
execute the request to the
remote funcX endpoint,
handling all communication
and authentication required

fx.run(...)

While the jobs run on the
remote HPC system, can make
periodic requests for �nished
results

fxc.get_result(...)

Returning the output of the user
de�ned functions

Execution with funcX: Register and run functions

9

...

 # register functions

 infer_func = fxc.register_function(infer_hypotest)

 patchset = pyhf.PatchSet(json.load(patchset_json))

 # execute patch fits across workers and retrieve them when done

 n_patches = len(patchset.patches)

 tasks = {}

 for patch_idx in range(n_patches):

 patch = patchset.patches[patch_idx]

 task_id = fxc.run(

 workspace,

 patch.metadata,

 [patch.patch],

 backend,

 endpoint_id=pyhf_endpoint,

 function_id=infer_func,

)

 tasks[patch.name] = {"id": task_id, "result": None}

 while count_complete(tasks.values()) < n_patches:

 for task in tasks.keys():

 if not tasks[task]["result"]:

 try:

 result = fxc.get_result(tasks[task]["id"])

 tasks[task]["result"] = result

 except Exception as excep:

 print(f"inference: {excep}")

 sleep(15)

...

The work�ow

fx.register_function(...)

fx.run(...)

can now be used to scale out as
many custom functions as the
workers can handle

This allows for all the signal
patches (model hypotheses) in
a full analysis to be run
simultaneously across HPC
workers

Run from anywhere (e.g. laptop)!

The user analyst has written
only simple pure Python

No system speci�c con�guration
�les needed

Execution with funcX: Scaling out jobs

10

Example: Fitting all 125 models from pyhf pallet

for published ATLAS SUSY 1Lbb analysis

DOI: https://doi.org/10.17182/hepdata.90607

Wall time under 2 minutes 30 seconds

Downloading of pyhf pallet from HEPData (submit machine)

Registering functions (submit machine)

Sending serialization to funcX endpoint (remote HPC)

funcX executing all jobs (remote HPC)

funcX retrieving �nished job output (submit machine)

Time from submitting jobs to plot can be minutes!

Deployments of funcX endpoints currently used
for testing

University of Chicago River HPC cluster (CPU)

NCSA Bluewaters (CPU)

XSEDE Expanse (GPU JAX)

feickert@ThinkPad-X1:~$ time python fit_analysis.py -c config/1Lbb.json

prepare: waiting-for-ep

prepare: waiting-for-ep

<pyhf.workspace.Workspace object at 0x7fb4cfe614f0>

Task C1N2_Wh_hbb_1000_0 complete, there are 1 results now

Task C1N2_Wh_hbb_1000_100 complete, there are 2 results now

Task C1N2_Wh_hbb_1000_150 complete, there are 3 results now

Task C1N2_Wh_hbb_1000_200 complete, there are 4 results now

Task C1N2_Wh_hbb_1000_250 complete, there are 5 results now

Task C1N2_Wh_hbb_1000_300 complete, there are 6 results now

Task C1N2_Wh_hbb_1000_350 complete, there are 7 results now

Task C1N2_Wh_hbb_1000_400 complete, there are 8 results now

Task C1N2_Wh_hbb_1000_50 complete, there are 9 results now

Task C1N2_Wh_hbb_150_0 complete, there are 10 results now

...

Task C1N2_Wh_hbb_900_150 complete, there are 119 results now

Task C1N2_Wh_hbb_900_200 complete, there are 120 results now

inference: waiting-for-ep

Task C1N2_Wh_hbb_900_300 complete, there are 121 results now

Task C1N2_Wh_hbb_900_350 complete, there are 122 results now

Task C1N2_Wh_hbb_900_400 complete, there are 123 results now

Task C1N2_Wh_hbb_900_50 complete, there are 124 results now

Task C1N2_Wh_hbb_900_250 complete, there are 125 results now

...

real 2m17.509s

user 0m6.465s

sys 0m1.561s

Scaling of statistical inference

11

https://www.hepdata.net/record/ins1755298
https://doi.org/10.17182/hepdata.90607

Example: Fitting all 125 models from pyhf pallet

for published ATLAS SUSY 1Lbb analysis

DOI: https://doi.org/10.17182/hepdata.90607

Wall time under 2 minutes 30 seconds

Downloading of pyhf pallet from HEPData (submit machine)

Registering functions (submit machine)

Sending serialization to funcX endpoint (remote HPC)

funcX executing all jobs (remote HPC)

funcX retrieving �nished job output (submit machine)

Time from submitting jobs to plot can be minutes!

Deployments of funcX endpoints currently used
for testing

University of Chicago River HPC cluster (CPU)

NCSA Bluewaters (CPU)

XSEDE Expanse (GPU JAX)

Click me to watch an asciinema!

Scaling of statistical inference

12

https://www.hepdata.net/record/ins1755298
https://doi.org/10.17182/hepdata.90607
https://asciinema.org/a/425477?autoplay=1

The nature of FaaS that makes it highly
scalable also leads to a problem for
taking advantage of just-in-time (JIT)
compiled functions

JIT is super helpful for performing pseudo-
experiment generation

To leverage JITed functions there
needs to be memory that is preserved
across invocations of that function

FaaS: Each function call is self
contained and doesn't know about
global state

funcX endpoint listens on a queue and invokes
functions

Still need to know and tune funcX
con�g to speci�cs of endpoint
resource

No magic bullet when using HPC center batch
t

In [1]: import jax.numpy as jnp

 ...: from jax import jit, random

In [2]: def selu(x, alpha=1.67, lmbda=1.05):

 ...: return lmbda * jnp.where(x > 0, x, alpha * jnp.exp(x) - alpha)

 ...:

In [3]: key = random.PRNGKey(0)

 ...: x = random.normal(key, (1000000,))

In [4]: %timeit selu(x)

850 µs ± 35.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [5]: selu_jit = jit(selu)

In [6]: %timeit selu_jit(x)

17.2 µs ± 105 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

50X speedup from JIT

FasS constraints and trade-offs

13

Summary
Through the combined use of the pure-Python libraries funcX and pyhf, demonstrated the ability to

parallelize and accelerate statistical inference of physics analyses on HPC systems through a (�tting) FaaS
solution

Without having to write any bespoke batch jobs, inference can be registered and executed by analysts with a
client Python API that still achieves the large performance gains compared to single node execution that is a
typical motivation of use of batch systems.

Allows for transparently switching work�ows between provider systems and from CPU to GPU environments

Not currently able to leverage bene�ts of JITed operations

Looking for ways to bridge this

All code used public and open source on GitHub!

14

https://github.com/scikit-hep/pyhf
https://github.com/funcx-faas/funcX
https://github.com/matthewfeickert/talk-scipy-2021

Thanks for listening!

Come talk with us!
www.scikit-hep.org/pyhf

15

https://scikit-hep.org/
https://github.com/scikit-hep/pyhf
https://iris-hep.org/
https://scikit-hep.org/pyhf/

Backup

16

Cloud service providers give an
excellent Functions as a Service
(FaaS) platform that can scale
elastically

Example: Running pyhf across

25 worker nodes on Google
Cloud Platform

Results being plotted as they are
streamed back

Fit of all signal model hypotheses in
analysis takes 3 minutes!

Powerful resource, but in
(academic) sciences experience
is still growing

"Pay for priority" model

fast and reliable

requires funding even with nice
support from cloud providers

(GIF sped up by 8x)

Functions as a Service natural habitat: Cloud

17

http://www.cern.ch/feickert/talks/plot_countour.gif

Example Parsl HighThroughputExecutor con�g

(from Parsl docs) that funcX extends

from parsl.config import Config

from libsubmit.providers.local.local import Local

from parsl.executors import HighThroughputExecutor

config = Config(

 executors=[

 HighThroughputExecutor(

 label='local_htex',

 workers_per_node=2,

 provider=Local(

 min_blocks=1,

 init_blocks=1,

 max_blocks=2,

 nodes_per_block=1,

 parallelism=0.5

)

)

]

)

block: Basic unit of resources acquired from a provider

max_blocks: Maximum number of blocks that can be active per executor

nodes_per_block: Number of nodes requested per block

parallelism: Ratio of task execution capacity to the sum of running tasks and available

tasks

9 tasks to compute

Tasks are allocated to the �rst block until its
task_capacity (here 4 tasks) reached

Task 5: First block full and
5/9 > parallelism

so Parsl provisions a new block for executing the
remaining tasks

funcX endpoints on HPC: Con�g Example

18

https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#elasticity
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#blocks
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#parallelism
https://parsl.readthedocs.io/en/1.1.0/userguide/execution.html#configuration

View of �tting FaaS Analysis Facility Blueprint

19

References
1. Lukas Heinrich, Distributed Gradients for Differentiable Analysis, Future Analysis Systems and Facilities

Workshop, 2020.

2. Babuji, Y., Woodard, A., Li, Z., Katz, D. S., Clifford, B., Kumar, R., Lacinski, L., Chard, R., Wozniak, J., Foster, I.,
Wilde, M., and Chard, K., Parsl: Pervasive Parallel Programming in Python. 28th ACM International Symposium
on High-Performance Parallel and Distributed Computing (HPDC). 2019.
https://doi.org/10.1145/3307681.3325400

20

https://indico.cern.ch/event/960587/contributions/4070325/
https://indico.cern.ch/event/960587/
https://doi.org/10.1145/3307681.3325400

The end.

20

