
Colmena:
Steering Ensemble Simulations
at ExaScales

Logan Ward
Assistant Computational Scientist
Data Science and Learning Division
Argonne National Laboratory

ParslFest

6 October 2020

2

Expanding Computational Design to the ExaScale

Existing

Solutions

Optimized

Systems

Generate

Designs

Simulate

Designs

HPC

Current Model: Humans steer HPC, HPC performs simulations (Months-Years)

Current Model Won't Scale. Humans are slow. Slow decisions, slow to learn

Generate

Designs

Simulate

Designs

Exascale HPC

Electrolytes

Water Clusters

Better Batteries

Better Science

Needed Solution: HPC steering itself (Days-Weeks)!

3

"Self-Steering HPC" is Difficult

AI Tasks Require Dedicated Compute Heterogenous Workflow Components

Source: https://openai.com/blog/ai-and-compute/,
https://www.i-programmer.info/news/105/11823

AI Models

Training Sets

Task Queues

Our Goal: Design software to mitigate these two issues

https://openai.com/blog/ai-and-compute/
https://www.i-programmer.info/news/105-artificial-intelligence/11823-an-exponential-law-for-ai-compute.html

4

Our Approach: Colmena

“Thinker”

Nodes
“Doer”

Nodes
Simulation Results

New Tasks

Design Goals:
• Simple expression of "AI in the loop" workflows
• Ability to partition resources between different tasks
• Extreme scaling, deployable on multiple resources

Concept: Steering application that submits tasks to separate resources

Steering

application

Colmena Design
and example
applications

6

Colmena is a wrapper over Parsl

Programming Model: Task Queues

Primitive Units

queue.send_inputs(1)

result = queue.get_result()

Advantages:
- Multiple producer/consumers
- Minimal submission overhead

Disadvantages:
- No status checking
- Task workflows difficult

Message Format: JSON objects

{
"inputs": [[1, 1], {"operator": "add"}],
"method": "reduce",
"value": 2,
"success": true,
"time_created": 1593498015.1324,
"time_input_received": 1593498015.133,
"time_compute_started": 1593498018.856,
"time_running": 1.8e-05,
"time_result_sent": 1593498018.858,
"time_result_received": 1593498018.860

}

- Track task overhead
- No client/server lock-in to Python

Task Engine: Parsl

Advantages:
- Supports most HPC and
cloud services
- Easily configure multiple worker
types and multi-site workflows

Disadvantages:
- Limited support for ensembles of
MPI applications [in progress]

7

Colmena simplifies writing parallel optimizers

Batch Optimizer Streaming Optimizer Interleaved Optimizer

Faster task generation rates

Fewer calls to “select next tasks” code

Wait for N tasks to complete,
then pick next batch

Pick new tasks as soon
as one completes

Maintain a task queue

https://github.com/exalearn/colmena/blob/82dfda9a3038701038a7e698ff7e932b2017d6f3/demo_apps/thinker-examples/batch.py
https://github.com/exalearn/colmena/blob/82dfda9a3038701038a7e698ff7e932b2017d6f3/demo_apps/thinker-examples/streaming.py
https://github.com/exalearn/colmena/blob/82dfda9a3038701038a7e698ff7e932b2017d6f3/demo_apps/thinker-examples/interleaved.py

8

Example Application: Molecular Design with RL and NWChem

9

Colmena gives detailed task tracking

*Scaling issue we are figuring out

8 node debugging run:
- 112 simulation workers on 7 nodes
- 2 AI workers on 1 node

~90%utilization of
simulation workers

Sustained rate of
~3 task/sec

10

Colmena gives detailed overhead measurements

Breakdown of each
communication hop

*Scaling issue we are
figuring out

11

Conclusions

• Short version: Building a library for OED/Active Learning on HPC

• Where we are: Building initial molecule design applications

– https://colmena.readthedocs.io/en/latest/, https://github.com/exalearn/colmena

• Where we are going:

– Understanding the full landscape of "exascale OED“

– Studying communication overheads in steering algorithms

– Evaluating optimal algorithms for learning at scale

Contact me! LWard@anl.gov

https://colmena.readthedocs.io/en/latest/
https://github.com/exalearn/colmena
mailto:LWard@anl.gov

12

Acknowledgements

Funding: DOE Exascale Computing Project, ExaLearn Co-design Center

The team:

UC/Argonne: Yadu Babuji, Kyle Chard, Ryan Chard, Ian Foster, Ganesh Sivaraman, Rajeev Thakur

Brookhaven National Laboratory: Frank Alexander, Anthony DeGennaro, Shantenu Jha,
Byung-Jun Kim, Kris Reyes, Li Tan

13

Example application: “Interleaved,” AI-in-the-loop optimizer

Task Ranker Simulation RunnerModel Updater

Task Queue

Model Library Value Store Run
Simulation

Train
Model

Score
Tasks

Inter-thread communication Colmena task requests

