Colmena: Steering Ensemble Simulations at ExaScales

Logan Ward
Assistant Computational Scientist
Data Science and Learning Division
Argonne National Laboratory

ParslFest
6 October 2020
Expanding Computational Design to the ExaScale

Current Model: Humans steer HPC, HPC performs simulations *(Months-Years)*

Current Model Won’t Scale. Humans are **slow.** Slow decisions, slow to learn

Needed Solution: **HPC steering itself (Days-Weeks)!**
"Self-Steering HPC" is Difficult

AI Tasks Require Dedicated Compute

Heterogenous Workflow Components

Our Goal: Design software to mitigate these two issues

Our Approach: **Colmena**

Concept: Steering application that submits tasks to separate resources

Design Goals:
- Simple expression of "AI in the loop" workflows
- Ability to partition resources between different tasks
- Extreme scaling, deployable on multiple resources
Colmena Design and example applications
Colmena is a wrapper over Parsl

Programming Model: Task Queues

Primitive Units

```python
queue.send_inputs(1)
result = queue.get_result()
```

Advantages:
- Multiple producer/consumers
- Minimal submission overhead

Disadvantages:
- No status checking
- Task workflows difficult

Message Format: JSON objects

```json
{
  "inputs": [[1, 1], {"operator": "add"}],
  "method": "reduce",
  "value": 2,
  "success": true,
  "time_created": 1593498015.1324,
  "time_input_received": 1593498015.133,
  "time_compute_started": 1593498018.856,
  "time_running": 1.8e-05,
  "time_result_sent": 1593498018.858,
  "time_result_received": 1593498018.860
}
```

Task Engine: Parsl

Advantages:
- Supports most HPC and cloud services
- Easily configure multiple worker types and multi-site workflows

Disadvantages:
- Limited support for ensembles of MPI applications [in progress]

- Track task overhead
- No client/server lock-in to Python
Colmena simplifies writing parallel optimizers

Faster task generation rates
Fewer calls to “select next tasks” code

Batch Optimizer
- Wait for N tasks to complete, then pick next batch

Streaming Optimizer
- Pick new tasks as soon as one completes

Interleaved Optimizer
- Maintain a task queue
Example Application: Molecular Design with RL and NWChem
Colmema gives detailed task tracking

Sustained rate of
~3 task/sec

8 node debugging run:
- 112 simulation workers on 7 nodes
- 2 AI workers on 1 node

~90% utilization of simulation workers

*SScaling issue we are figuring out
Colmena gives detailed overhead measurements

Scaling issue we are figuring out

Breakdown of each communication hop
Conclusions

• **Short version:** Building a library for OED/Active Learning on HPC

• **Where we are:** Building initial molecule design applications

• **Where we are going:**
 – Understanding the full landscape of "exascale OED"
 – Studying communication overheads in steering algorithms
 – Evaluating optimal algorithms for learning at scale

Contact me! LWard@anl.gov
Acknowledgements

Funding: DOE Exascale Computing Project, ExaLearn Co-design Center

The team:

UC/Argonne: Yadu Babuji, Kyle Chard, Ryan Chard, Ian Foster, Ganesh Sivaraman, Rajeev Thakur

Brookhaven National Laboratory: Frank Alexander, Anthony DeGennaro, Shantenu Jha, Byung-Jun Kim, Kris Reyes, Li Tan
Example application: “Interleaved,” Al-in-the-loop optimizer