
Building Modular Parsl Workflows
in Parallel Works

A Google Cloud
Partner

Contact:
alvaro@parallelworks.com

Parallel Works Inc. Copyright 2020. All Rights Reserved.

1. Workflows in Parallel Works

2. Modular workflows
a. Motivation
b. Sweep_CSV
c. Pipeline

3. Wrapping Parsl Apps: SimpleBashRunner

Outline

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Parsl script(s) are encapsulated
into a Parallel Works “workflow”

or “app”

Workflows in Parallel Works

INPUTS OUTPUTS INPUTS OUTPUTS

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Workflows in Parallel Works

Use Parallel Works to:
● Develope
● Execute
● Share

Parallel Works Inc. Copyright 2020. All Rights Reserved.

1. Workflows in Parallel Works

2. Modular workflows
a. Motivation
b. Sweep_CSV
c. Pipeline

3. Wrapping Parsl Apps: SimpleBashRunner

Outline

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Modular Workflows: Motivation

Input file(s) with
input parameters

defining single
case

Run simulation
Case simulation

result file(s)

x1=1
x2=2
...

Post-process results with
another workflow?

Case simulation result
file(s) Post-process results Case metrics, images

and animations

y1=3
y2=1
...

Typical simple workflow

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Modular Workflows: Motivation

x1=1
x2=2
...

y1=3
y2=1
...

x1=1
x2=2
...

y1=3
y2=1
...

3 Workflows:
1. CONVERGE_RUNNER
2. PVPOST
3. CONVERGE_PV_RUNNER

Copy and edit blocks of code to make
a third workflow:

● Pros:
○ Workflow is self contained

● Cons:
○ Hard to maintain
○ Need to update many

workflows
○ Too many workflows
○ Hard to test
○ Slow development
○ More code
○ ...Run and post-process in

the same workflow?

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Modular Workflows: Motivation

x1=1
x2=2
...

y1=3
y2=1
...

x1=1
x2=2
...

y1=3
y2=1
...

5 Workflows:
1. CONVERGE_RUNNER
2. PVPOST
3. CONVERGE_PV_RUNNER
4. OPENFOAM_RUNNER
5. OPENFOAM_PV_RUNNER

Use a different CFD tool?

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Modular Workflows: Motivation

x1,x2,...
1,2,..
3,4,…
...

y1,y2,...
3,2,..
7,5,…
...

...

x1=1
x2=2
...

x1=3
x2=4
...

y1=3
y2=1
...

y1=7
y2=1
...

AND MORE...
1. CONVERGE_RUNNER
2. PVPOST
3. CONVERGE_PV_RUNNER
4. OPENFOAM_RUNNER
5. OPENFOAM_PV_RUNNER
6. CONVERGE_PV_SWEEP
7. OPENFOAM_PV_SWEEP
8. ...

Run different cases in
parallel and merge

results?

one workflow for every
compatible software tool
and workflow topology
combination

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Modular Workflows: Motivation

x1,x2,...
1,2,..
3,4,…
...

y1,y2,...
3,2,..
7,5,…
...

...

Build workflows as Python
modules that can be imported by
other workflows

● Pipelining
● CSV Sweep
● Optimization
● Active Learning
● ...

Advantages:
● Fast development
● Easy to maintain
● Less workflows
● Less code
● ...Less workflows!

1. CONVERGE_RUNNER
2. PVPOST
3. OPENFOAM_RUNNER
4. PIPELINE
5. SWEEP_CSV

Better than one workflow for every compatible
software tool and workflow topology combination

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Modular Workflows: main.py
import parsl

from parslpw import pwconfig,pwargs

RUN WORKFLOW FUNCTION

def run_workflow (wf_pwargs, wf_dir = "./workflow"):

 # Workflow code HERE

 # ...

 # ...

 # Return dictionary where keys are output parameter names and values

objects with .result() method or dictionaries in the same format

 return out_futs

if __name__ == "__main__":

 # Workflow executed directly

 # Write code HERE

 # ...

 import module_sample

 # ...

 # Load Parsl configuration

 parsl.load(pwconfig)

 # Run workflow

 out_futs = run_workflow(pwargs)

 # Wait for results

 wfbuilder.wfconn.wait_for_futs(out_futs)

else:

 # Workflow imported by other workflow

 # Write code HERE

 # ...

 if not os.path.isdir("module_sample"):

 shutil.copytree("/pw/workflows/workflow/module_sample", "module_sample")

 import module_sample

 # ...

sam
ple

m
ain.py script

Create a workflow script (main.py) that can be:
1. Executed directly

runs:
python main.py
in /pw/jobs/job_num/

2. Imported by other workflows
imported_workflow = wfbuilder.import_workflow(workflow_name)

Main parts:
1. Run workflow function(s): Imported and executed by other workflows

● Do not wait for futures inside these functions
○ If imported cannot be executed multiple times in parallel

● To be compatible with wfbuilder module
○ Inputs:

i. (Required) wf_pwargs: Python Namespace with functions IO
ii. (Optional) wf_dir: Workflow directory for intermediate IO, logs, etc.

○ Outputs:
i. Dictionary of objects with a .result() method were keys are output

parameter names
2. Only when executed directly:

○ Load Parsl configuration
○ Load and preprocess IO
○ Run workflow function(s)
○ Wait for results

3. Only when imported → Build workflow as module
4. Execute always

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Example 1: SWEEP_CSV(MMS_RUNNER) (“placeholder workflow”)

Modular Workflows: SWEEP_CSV

Parallel Works Inc. Copyright 2020. All Rights Reserved.

MMS:

Modular Workflows: SWEEP_CSV

x 0.0404

y 0.5454

NAMESPACE:

pwargs.casename = "TEST"

pwargs.in_mms = "/pw/projects/mms/xy.txt"

pwargs.out_mms = "/pw/project/mms/mms-TEST-date-time.txt"

x=0.0404
y=0.5454
z=0.8123

in_mms out_mms

import sys

import os,shutil

import parsl

from parslpw import pwconfig,pwargs

if not os.path.isdir("wfbuilder"):

 shutil.copytree("/pw/modules/wfbuilder", "wfbuilder")

import wfbuilder

def run(wf_pwargs , wf_dir = "mms_runner"):

 os.makedirs(wf_dir, exist_ok =True)

 print("MMS_RUNNER INPUTS:")

 print(wf_pwargs)

 # Define runner

 runner = wfbuilder.pwrunners.SimpleBashRunner(

 cmd = "/bin/bash mms/mms_eval.sh" ,

 cmd_arg_names = ["in_mms" , "out_mms"],

 inputs = {

 "in_mms" : wfbuilder.Path(wf_pwargs.in_mms),

 "scripts" : wfbuilder.Path("/pw/workflows/mms_runner/./mms"),

 },

 outputs = {"out_mms" : wfbuilder.Path(wf_pwargs.out_mms)},

 logs = {

 "stdout" : wf_dir + "/mms.out" ,

 "stderr" : wf_dir + "/mms.err"

 }

)

 return runner.run()

if __name__ == "__main__" :

 # Runs only when executed (not when imported)

 parsl.load(pwconfig)

 case_fut = run(pwargs)

 case_fut["out_txt"].result()

m
ain.py script

Parallel Works Inc. Copyright 2020. All Rights Reserved.

SWEEP_CSV:

1. Splits a CSV (in_csv) file into several case inputs files (in_txt)

2. Submits “runner” workflows in parallel such that each
workflow gets a case file. Compatibility:

● Input and output files in the right format
● Other inputs remain constant
● Other outputs (images, logs, etc) need to appear in the

workflow output directory (wf_dir)

Workflow Building: SWEEP_CSV

x,y

0.0404,0.5454

0.0202,0.8787

0.9898,0.8080

...

x,y,z

0.0404,0.5454,0.8123

0.0202,0.8787,0.2345

0.9898,0.8080,0.0159

...

x 0.0404

y 0.5454

x 0.0202

y 0.8787

x 0.9898

y 0.8080

x=0.0404

y=0.5454

z=0.8123

x=0.0404

y=0.5454

z=0.2345

x=0.0404

y=0.5454

z=0.0159

...

in_txt out_txt

"in_sep": " " "out_sep": "="

in_csv
out_csv

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Workflow Building: SWEEP_CSV

{

 "import": ["mms_runner"], (workflows to import)

 "runner": (workflow info)

 {

 "wfname": "mms_runner", (name)

 "run_func": "run", (run function)

 "in_sep": " ", (input parameter name/value separation)

 "out_sep": "=", (output parameter name/value separation)

 "in_excld": [], (input parameter names to exclude from in_txt)

 "out_excld": [], (output parameter names to exclude from out_csv)

 "wfparams": { (parameters of the run_func)

 "in_mms": "in_txt", (tagged input parameter to be replaced by the Sweep_CSV)

 "out_mms": "out_txt" (tagged output parameter to be replaced by the Sweep_CSV)

 (other constant IO definitions may be added here)

 }

 }

}

Workflow inputs:

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Workflow Building: SWEEP_CSV
You need to wait and merge the results but you cannot do it
inside the run_csv function:

● Return a SweepFut object with a .result() method that
waits for the futures and merges all the case output files
(out_txt) into a single CSV output file (out_csv)

class SweepFut():
 def __init__ (self, rwf_fut_list , rwf_conn , wf_pwargs):

 self.rwf_fut_list = rwf_fut_list

 self.rwf_conn = rwf_conn

 self.wf_pwargs = wf_pwargs

 # METHOD TO WAIT AND MERGE RESULTS!

 def result(self):
 # Wait for results

 out_txt_paths = []

 for rwf_fut in self.rwf_fut_list:

 out_txt_paths.append(rwf_fut[self.rwf_conn["out_txt"]].result().path)

 # Merge results in CSV

 wfbuilder.data_reformat.txts2csv(

 out_txt_paths,

 self.wf_pwargs.out_csv,

 exclude = self.wf_pwargs.runner["out_excld"],

 sep = self.wf_pwargs.runner["out_sep"],

)

 return self.wf_pwargs.out_csv

import os, sys, shutil, json

import parsl

from parslpw import pwconfig,pwargs

from copy import deepcopy

import inspect

if not os.path.isdir("wfbuilder"):

 shutil.copytree("/pw/modules/wfbuilder", "wfbuilder")

import wfbuilder

Run CSV

def run_csv(wf_pwargs, wf_dir = "./sweep_csv"):
 os.makedirs(wf_dir, exist_ok = True)

 print("Sweep CSV wf_pwargs:", flush = True)

 print(wf_pwargs, flush = True)

 # RUNS SWEEP of MMS RUNNERs

 # DELETED CODE FOR SPACE

 return {"out_csv": SweepFut(rwf_fut_list, rwf_conn, wf_pwargs)}

if __name__ == "__main__":

 # This pwarg is only seen when executed from the form!

 with open(pwargs.sweepconf_json, 'r') as json_file:

 sweepconf = json.load(json_file)

 # Imported workflows

 if "import" in sweepconf:

 for wf_name in sweepconf["import"]:

 rwf = wfbuilder.pwimport.import_workflow(wf_name)

 # Add runner info to workflow arguments

 pwargs.runner = sweepconf["runner"]

 parsl.load(pwconfig)

 sweep_csv_fut = run_csv(pwargs)

 sweep_csv_fut["out_csv"].result()

Parts of the

m
ain.py script

of SW
EEP_CSV

Parts of the

m
ain.py script

of SW
EEP_CSV

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Example 2: PIPELINE(DOE_GEN, SWEEP_CSV(MMS_RUNNER))

Workflow Building: PIPELINE

Two base workflows

Two workflow
topologies

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Design of experiments:

Workflow Building: PIPELINE

{

 "x": [0, 1],

 "y": [0, 1]

}

INPUTS:

pwargs.casename = "CaseName"

pwargs.dspace = "/pw/projects/pipeline/xy_dspace.json"

pwargs.method = "lhs-spacefill"

pwargs.num_samples = "50"

OUTPUTS:

pwargs.out_csv = "/storage/mms/doe-CaseName-date-time.csv"

pwargs.out_png = "/storage/mms/doe-CaseName-date-time.png"

pwargs.out_html =

"/storage/mms/doe-CaseName-date-time.html"

x,y

0.0404,0.5454

0.0202,0.8787

0.9898,0.8080

...

dspace out_csv out_png

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Workflow Building: PIPELINE

x,y

0.0404,0.5454

0.0202,0.8787

0.9898,0.8080

...

x,y,z

0.0404,0.5454,0.8123

0.0202,0.8787,0.2345

0.9898,0.8080,0.0159

...

x 0.0404

y 0.5454

x 0.0202

y 0.8787

x 0.9898

y 0.8080

x=0.0404

y=0.5454

z=0.8123

x=0.0404

y=0.5454

z=0.2345

x=0.0404

y=0.5454

z=0.0159

...

in_txt out_txt

"in_sep": " "
"out_sep": "="

{

 "x": [0, 1],

 "y": [0, 1]

}

Parallel Works Inc. Copyright 2020. All Rights Reserved.

PIPELINE:

● Runs a list of workflows in order piping the output
of the previous workflows to the input of the next
workflow(s)

● Only waits for the required DataFutures

● Returns a dictionary with remaining DataFutures
and completed results

Workflow Building: PIPELINE

Run pipeline

def run_pipeline (wf_pwargs , wf_dir = "./pipeline"):

 os.makedirs(wf_dir, exist_ok = True)

 print("Pipeline wf_pwargs:" , flush = True)

 print(wf_pwargs, flush = True)

 pipeconf = wf_pwargs.pipeconf

 wf_futs = {}

 for wi, wf_info in enumerate (pipeconf["pipeline"]):

 # Import workflow:

 wf = wfbuilder.pwimport.import_workflow(wf_info["wfname"])

 wf_run_func = getattr(wf, wf_info["run_func"])

 next_wf_pwargs = Namespace(**wf_info["wfparams"])

 if wi > 0:

 # Depends on the previous workflows

 # Get current workflow input from previous workflow outputs

 # Get workflow connections (dependencies)

 for pwi in reversed (range(wi)): # For previous workflow index (wfi)

 next_wf_pwargs, wf_conn = wfbuilder.wfconn.get_wf_pwargs(

 vars(next_wf_pwargs),

 pipeconf["pipeline"][pwi]["wfparams"]

)

 # Make sure all dependencies are ready from previous workflows:

 for fut_key in wf_conn.keys():

 wf_futs[pipeconf["pipeline"][pwi]["wfname"]][fut_key].result()

 # Run workflow:

 wf_futs[wf_info["wfname"]] = wf_run_func(next_wf_pwargs, wf_dir = wf_dir +

"/"

 +

wf_info["wfname"])

 prev_wf_info = wf_info

 return wf_fut

if __name__ == "__main__":

 # This pwarg is only seen when executed from the form!

 with open(pwargs.pipeconf_json, 'r') as json_file:

 pwargs.pipeconf = json.load(json_file)

 # Imported workflows!

 if "import" in pwargs.pipeconf:

 for wf_name in pwargs.pipeconf["import"]:

 rwf = wfbuilder.pwimport.import_workflow(wf_name)

 parsl.load(pwconfig)

 wfbuilder.wfconn.wait_for_futs(run_pipeline(pwargs))

m
ain.py script

of PIPELINE

Parallel Works Inc. Copyright 2020. All Rights Reserved.

Workflow Building: PIPELINE
{

 "import": ["doe_gen", "sweep_csv", "mms_runner"], (workflows to import)

 "pipeline": [(list of workflows to execute serially)

 { (first workflow to run)

 "wfname": "doe_gen", (name)

 "run_func": "run_doe", (run function)

 "wfparams": { (parameters of the run function)

 "dspace": "/pw/projects/pipeline/xy_dspace.json",

 "method": "lhs-spacefill",

 "num_samples": "50",

 "out_csv": "/pw/tmp/pipeline/xy.csv",
 "out_png": "/pw/tmp/pipeline/xy.png",

 "out_html": "/pw/tmp/pipeline/xy.html"

 }

 },

 { (second workflow to run)

 "wfname": "sweep_csv", (name)

 "run_func": "run_csv", (run function)

 "wfparams": { (parameters of the run function)

 "in_csv": "out_csv", (tagged input parameter to replace with out_csv from the previous workflow(s))
 "out_csv": "/pw/tmp/pipeline/xyz.csv",

 "runner": {

 "wfname": "mms_runner",

 "run_func": "run",

 "in_sep": " ",

 "out_sep": "=",

 "in_excld": [],

 "out_excld": [],

 "wfparams": {

 "in_mms": "in_txt",

 "out_mms": "out_txt"

 }

 }

 }

 }

]

}

Any workflow parameter value that
corresponds to a workflow parameter
key from a previous workflow will be
replaced by the corresponding
parameter value

Parallel Works Inc. Copyright 2020. All Rights Reserved.

1. Workflows in Parallel Works

2. Modular workflows
a. Motivation
b. Sweep_CSV
c. Pipeline

3. Wrapping Parsl Apps: SimpleBashRunner

Outline

Parallel Works Inc. Copyright 2020. All Rights Reserved.

 crunner = wfbuilder.pwrunners. SimpleBashRunner(

 cmd = "bash scripts/run.sh" ,

 cmd_arg_names = ["in_zip", "lic_server" , "np", "out_zip"],

 inputs = {

 "in_zip": wfbuilder.Path(wf_pwargs.in_zip),

 "lic_server" : wf_pwargs.lic_server,

 "np": wf_pwargs.np,

 "scripts": wfbuilder.Path("/pw/workflows/converge_runner/./scripts")

 },

 outputs = {

 "out_zip": wfbuilder.Path(wf_pwargs.out_zip)

 },

 logs = {

 "stdout": wf_dir + "/std.out" ,

 "stderr": wf_dir + "/std.err"

 },

 stream_host = "localhost" ,

 stream_port = os.environ['PARSL_CLIENT_SSH_PORT'],

 user = "cluster",

 write_pool_info = True

)

 crunner_fut = crunner.run()

Wrapping Parsl Apps: SimpleBashRunner

Build wrappers around Parsl Apps to execute
tasks every time a Parsl App is executed

SimpleBashRunner object:
● Runs a bash_app
● Builds and runs a bash command

○ cmd cmd_args
● IO are defined as dictionaries
● Streams standard output and error files

from remote VM to local (PW)
● Run command as a given user
● Implements extra logging for debugging
● Writes resource information in the remote

VM
● Returns a dictionary with the DataFutures

{

 "out_key_1": <DataFuture>,

 "out_key_2": <DataFuture>,

 ...

}

{"out_zip": <DataFuture at 0x7f2f638c11d0 state=pending>}

Parallel Works Inc. Copyright 2020. All Rights Reserved.

SUMMARY

Parsl App Wrappers:
● Run tasks every time a Parsl App is executed

Modular workflows:
● Built as a Python modules that can be executed directly or imported
● Workflow functions return futures and do not wait for results
● Only wait for results when executed directly (if __name__ == “__main__”)

Thanks for your attention!

Contact:
alvaro@parallelworks.com

Questions?

