
Fine Grained Resource Management
for Functions in Parsl and Work Queue

Douglas Thain
University of Notre Dame
3 October 2019

Parsl + Work Queue for Scalable Apps

2

http://ccl.cse.nd.eduhttp://parsl-project.org

Powerful Pythonic Workflow
Programming Model

Scalable, Portable, Robust
Distributed Execution

Some Work Queue Applications
Nanoreactors

ab-initio Chemistry
ForceBalance
FF Optimization

Adaptive Weighted Ensemble
Molecular Dynamics

Lobster
CMS Data Analysis

SHADHO
Hyperparameter OptimizationLow-Level API:

task = create(details);
submit(task);
task = wait(timeout);

Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus Izaguirre, Douglas Thain,
Work Queue + Python: A Framework For Scalable Scientific Ensemble Applications,
Workshop on Python for High Performance and Scientific Computing (PyHPC) at Supercomputing 2011.

http://ccl.cse.nd.edu/research/papers/wq-python-pyhpc2011.pdf

Work Queue Capabilities

Elastic. Workers can be added and removed during runtime,
and the manager automatically uses the workers available.

Robust. Tasks running on workers that fail are automatically
detected and handled elsewhere.

Data Management. Files may be cached at the workers, which
reduces transfer times and network utilization. (No shared FS)

Resource Management. Resources such as core, memory,
and disk are tracked and limited, so both tasks and workers can
be heterogeneous.

Language Agnostic. Workers may run in campus cluster,
national labs, or commercial cloud facilities. Managers can be
written in Python, Perl, or C. (SWIG/JSON bindings for more)

4

So What's New?

$ conda install -y -c conda-forge cctools parsl

Last Year: 2019

This Year: 2020

Local Filesystem

Execute Tasks
Remotely

on Local Disk

System Architecture

Parsl Python Interface

Parsl Data Flow Kernel

Parsl / WQ Executor

Work Queue Manager Worker

$$$

Generate Funcs

Order Functions
(Futures)

Functions -> Tasks

Schedule Tasks

WorkerWorkerWorkerWorkerWorkerWorker

Thousands of Workers
on National Cyberinfrastructure

HTCondor, PBS, SLURM, Amazon,
Blue Waters, OSG, XSEDE...

Task
Task

Task
Task

TaskA B A
B

Evolution of Batch Computing

TaskTaskTaskTaskTaskTask

1 core
1 GB
RAM

1 core
1GB
RAM

2 core
2 GB
RAM

2 core
2GB
RAM

4 core
4GB
RAM

Shared
Filesystem

96 cores
128 GB RAM

256 cores
64 GB RAM

256 cores
64 GB RAM

Shared
Filesystem

SSD

SSD

SSD

𝛌 𝛌 𝛌 𝛌 𝛌 𝛌 𝛌 𝛌

"Classic" Batch Computing:
One Process per Node

Manycore Cluster Computing:
Multiple (Small) Functions per Node

Task Task Task

𝛌 𝛌

𝛌 𝛌

𝛌 𝛌

Load?

How many tasks can I run on
this node at once?

What is the best node to
run this program on?

Pop Quiz!

What are the two most terrifying words
in the Python language?

import tensorflow

Challenge 1: Transporting Python Environments

𝛌

Shared
Filesystem

𝛌 𝛌

Shared
Filesystem

SSD SSD

𝛌 𝛌 𝛌 𝛌

Direct
Access

Local
Unpack

M M M

M M M M

M M M

M M M M
PPACK

PPACK PPACK

Python Interpreter

Challenge 2: How many functions per node?

10

We must be able to measure a single function call!
LFM - Lightweight Function Monitor

import A import B

function

LFM

Python Interpreter

import A import B

function

LFM
fork (COW)

Resoure Usage

Python Interpreter

import A import B

function

LFM

Python Interpreter

import A import B

function

LFM

funcA -> { 0.5 cores, 2.3GB RAM, 15s }
funcB -> { 2.1 cores, 0.9GB RAM, 9s }

Lightweight Function Monitors (LFMs)

11

Activate LFMs with an import and the @monitored keyword

Putting it All Together

96 cores
128 GB RAM

256 cores
64 GB RAM

256 cores
64 GB RAM SSD

SSD

SSD

𝛌 𝛌 𝛌 𝛌 𝛌 𝛌 𝛌 𝛌

Parsl Python Interface

Parsl Data Flow Kernel

Parsl / WQ Executor

Work Queue Manager

LFM

LFM

LFM

𝛌 𝛌

𝛌

𝛌 𝛌

𝛌

𝛌 𝛌

𝛌𝛌

Tutorial Later This Afternoon

Zhuozhao Li
U. Chicago

Fine-grained Management of Resources with WorkQueue

Tim Shaffer
U. Notre Dame

U. of Notre Dame: Tim Shaffer, TJ Dasso, Andrew Litteken,
 Tanner Juedeman, Ben Tovar

U. Chicago: Zhuozhao Li, Yadu Babuji , Ben Clifford,
 Anna Woodard, Kyle Chard, Ian Foster

NSF Grant #ACI-1642409 (SI2-CCTools)
NSF Grant #OAC-1931387 (CSSI Dataswarm)
DOE SGCSR Fellowship (Shaffer)

Contributors

14

http://ccl.cse.nd.edu
http://parsl-project.org

http://ccl.cse.nd.edu
http://parsl-project.org

