% UNIVERSITY OF
&5/ NOTRE DAME

ey
-

Fine Grained Resource Management
for Functions in Parsl and Work Queue

Douglas Thain
University of Notre Dame
3 October 2019




CCTools

Parsl + Work Queue for Scalable Apps

http://parsl-project.org

S=Parsl

Productive parallel programming in Python

Use Parsl to create parallel programs comprised of Python functions and external components. Execute Pars| programs
on any compute resource from laptops to supercomputers.

C python
@

Tryﬁrsl Install Parsl|

Use Binder to run Pars| tutorials in hosted Pip install Pars| or checkout Pars! from
Jupyter notebooks. No installation source.

Try now »

Contribute

View, fork, and contribute to the open
source Pars| on GitHub.

Powerful Pythonic Workflow
Programming Model

http://ccl.cse.nd.edu

Work Queue: A Scalable Master/Worker Framework
Work Queue is a framework for building large master-worker applications that Wor k Queue
span thousands of machines drawn from clusters, clouds, and grids. Work

Queue applications are written in C, Perl, or Python using a simple API that

allows users to define tasks, submit them to the queue, and wait for

completion. Tasks are executed by a standard worker process that can run on

any available machine. Each worker calls home to the master process,

arranges for data transfer, and executes the tasks. The system handles a wide

variety of failures, allowing for dynamically scalable and robust applications.

Work Queue has been used to write applications that scale from a handful of
workstations up to tens of thousands of cores running on supercomputers.
Examples include Lobster, NanoReactors, ForceBalance, Accelerated
Weighted Ensemble, the SAND genome assembler, the Makeflow workflow engine, and the All-Pairs and Wavefront abstractions.
The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing, distributed computing, and
cyberinfrastructure at the University of Notre Dame, the University of Arizona, and the University of Wisconsin - Eau Claire.

For More Information

Work Queue User's Manual

Work Queue API (C | Perl | Python)

Work Queue Example Program (C | Perl | Python)
Work Queue Status Display.

Download Work Queue

Getting Help with Work Queue

DISCLECTURE 5B Part 1

C, Pgthaa, Por)

i b”

it '\)).u | 2

DISC

Master-Worker Programming Model

Scalable, Portable, Robust
Distributed Execution

v



Some Work Queue Applications

Nanoreactors
ab-initio Chemistry

Time (ps)

a §'§100 100 200 —r 400 ) ‘500
b lllllllllllllllll‘Illllllllllll-lll AN NNNNNNNNNEN. P
| Pl
¢ } Sv| M3s .| o Ve
o R %0 | ngy B D
@Y ? @ Ko
30 S| £8d o | heia
R %3? :

26C,H, + CHy + CoHy + 2H, + 2CH, + CH, + CH, + CgH +

39CH, > CyHy+CHg+ CyiHig CeHg + C7H7 + CoHio + CygHss

Adaptive Weighted Ensemble

Molecular Dynamics
o A"

*

ForceBalance
FF Optimization

Simulations:
& : Reference Data:
Binding Energies, e .
¢ | ab initio calculations
Forces, Density, 2
and experiment
AH,,,. etc.

Evaluate differences with reference data A

Add Bayesian
regularization

Perform
simulations

Z

V2 " T
Force Field jec_tlve
\ function

ForceBalance Converged?

Update
p:\r;m\c(cr.\
(no)
(yes)
Optimization

Initial method Optimized

P‘JT.““U[CFS par:\mc(crs

task = create(details);
submit( task );
task = wait( timeout );

Low-Level API:

Lobster
CMS Data Analysis

Lobster divides

i ocMms o™s Output
! Software : Data :  Data
: at CERN ! at CERN In HDFS

SHADHO

Hyperparameter Optimizatiqn

Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus Izaguirre, Douglas Thain,

Work Queue + Python: A Framework For Scalable Scientific Ensemble Applications,

Workshop on Python for High Performance and Scientific Computing (PyHPC) at Supercomputing 2011.



http://ccl.cse.nd.edu/research/papers/wq-python-pyhpc2011.pdf

_._ _

CCTools

Work Queue Capabilities

Elastic. Workers can be added and removed during runtime,
and the manager automatically uses the workers available.

Robust. Tasks running on workers that fail are automatically
detected and handled elsewhere.

Data Management. Files may be cached at the workers, which
reduces transfer times and network utilization. (No shared FS)

Resource Management. Resources such as core, memory,
and disk are tracked and limited, so both tasks and workers can
be heterogeneous.

Language Agnostic. \Workers may run in campus cluster,
national labs, or commercial cloud facilities. Managers can be
written in Python, Perl, or C. (SWIG/JSON bindings for mor="

v



_._ _

CCTools

So What's New?

Last Year: 2019

This Year: 2020

$ conda install -y -c conda-forge cctools parsl



_._ _

CCTools

System Architecture

Thousands of Workers
on National Cyberinfrastructure

Generate Funcs Parsl Python Interface HTCondor, PBS, SLURM, Amazon,
Blue Waters, OSG, XSEDE...
N 7
4 )
Order Functions | parg| Data Flow Kernel
(Futures)
g J
4 N\ ~ N\
Functions -> Tasks Parsl /| WQ Executor
\§ J
Schedule Tasks Work Queue Manager > Task
g J
\
A - Task - B Execute Tasks
Remotely

Local Filesystem on Local Disk




_._ _

CCTools

Evolution of Batch Computing

"Classic" Batch Computing: Manycore Cluster Computing:
One Process per Node Multiple (Small) Functions per Node

s @@

14 Cr(‘)lrae 1429;6 4 core m m 256 cores
What is the best node to How many tasks can | run on
run this program on? this node at once?

N N Q/Xx) caonRAM | SSD

Shared
Filesystem

Shared

Load? Filesystem



o A
Pop Quiz!

What are the two most terrifying words
iIn the Python language?

import tensorflow



_._ _

CCTools

Challenge 1: Transporting Python Environments

Direct
Access

#00 - T - 1600 ' ' 1
Direct Access Direct Access

700 + LocalUnpack /A - 1400 } Lecal Unpack 3 -

600 1 1200
- g
§ 500 } | g 1000 }
§ 400t . § 800f E
o / J
= 300 -~ . 7 600 }
ke} o~ -3 o

200 | P : aoo | > ;

o -
100 ¢ / - 200 + __,_--A- i -
O
™ o = p—_
o L8 & o 3 %) o T . A
0 16 64 128 220 0 64 128 256 512



CCTools

Challenge 2: How many functions per node?

We must be able to measure a single function call!
LFM - Lightweight Function Monitor

G o o

7’ ~
¢t ,- - -0 == \
/ Python Interpreter \ A .
fork (COW) : | ,’ Python Interpreter \\
LFM y1re-=-=-=-=-=-==-- 1|
(1o LFM |
1! : - 1|
function : : | Fm————————- : :
(1! ' function Iy
I | | P | |
import A import B (1] Rt I niddaiad B
\\ / Resoure Usage \\'\ : | importA ! I importB : :
|
e pa—— )
. ’
funcA -> { 0.5 cores, 2.3GB RAM, 15s } S = = =~ -

funcB -> { 2.1 cores, 0.9GB RAM, 9s }



CCTools

Lightweight Function Monitors (LFMs)

Activate LFMs with an import and the @monitored keyword

In [7]: from resource monitor import monitored
from time import sleep

In [12]: # declare a function to be monitored with the @monitored() decorator

@monitored()
def my function 1l(wait for):

sleep(wait for)
return 'waitied for {} seconds'.format(wait for)

(result, resources) = my function 1( 1)
print(result, '{}'.format({'memory': resources['memory'], 'wall time': resources['wall t

waitied for 0.1 seconds {'memory': 49, 'wall time': 101689}



CCTools

Putting it All Together

[ Parsl Python Interface }

4 S\ A h )
Parsl Data Flow Kernel @ [@ @ @ .
\\ J
- N\ A o :;D.FI\Q;
Parsl / WQ Executor [ @ @ @ .
\\ J
N\ ™ \ @ / @

@




_._ _

CCTools

Tutorial Later This Afternoon

Fine-grained Management of Resources with WorkQueue

Zhuozhao Li
U. Chicago

Tim Shaffer
U. Notre Dame

To utilize Work Queue with Parsl, please install the full CCTools software package within an
appropriate Anaconda or Miniconda environment (instructions for installing Miniconda can be
found here):

$ conda create -y -—name <environment> python=<version> conda-pack
$ conda activate <environment>
$ conda install -y -c conda-forge cctools parsl

This creates a Conda environment on your machine with all the necessary tools and setup needed
to utilize Work Queue with the Parsl library.

The following snippet shows an example configuration for using the Work Queue distributed
framework to run applications on remote machines at large. This examples uses the

WorkQueueExecutor to schedule tasks locally, and assumes that Work Queue workers have been
externally connected to the master using the work_queue_factory or condor_submit_workers
command line utilities from CCTools. For more information on using Work Queue or to get help
with running applications using CCTools, visit the CCTools documentation online.

from parsl.config import Config
from parsl.executors import WorkQueueExecutor

config = Config(
executors=[
WorkQueueExecutor(
label="wqgex_local",
port=50055,
project_name="WorkQueue Example",
shared_fs=True,
see_worker_output=True



_._ _

CCTools

Contributors

U. of Notre Dame: Tim Shaffer, TJ Dasso, Andrew Litteken,
Tanner Juedeman, Ben Tovar

U. Chicago: Zhuozhao Li, Yadu Babuiji , Ben Clifford,
Anna Woodard, Kyle Chard, lan Foster

NSF Grant #ACI-1642409 (SI12-CCTools)
NSF Grant #0AC-1931387 (CSSI Dataswarm)

DOE SGCSR Fellowship (Shaffer) http://ccl.cse.nd.edu

http://parsi-project.org Work Queue

-

v


http://ccl.cse.nd.edu
http://parsl-project.org

