
Fine-grain management of
resources with WorkQueue

ParslFest 2020

Tim Shaffer Zhuozhao Li Ben Tovar

tshaffe1@nd.edu zhuozhao@uchicago.edu btovar@nd.edu

Work Queue Executor

Using WQ with Parsl

Work Queue is a manager-worker framework for executing
tasks on a pool of workers

● Similar use cases as HighThroughputExecutor
○ Pilot job model allows many small tasks to run without waiting

in the batch queue
○ Pack multiple tasks per worker node

● Plus some additional features
○ WQ handles file transfers by default, so no shared FS required
○ Workers cache common input files, reducing transfer times
○ Fine-grained resource management
○ Automatic dependency management

Install via Conda

4

create and activate a Conda environment
$ conda create -y --name <environment> \

python=<version> pip
$ conda activate <environment>

install CCTools and Parsl
$ conda install -c conda-forge ndcctools
$ pip install parsl

Make sure Conda is installed and set up first

Starting Workers

$ work_queue_factory -Tcondor \
 -M my-app
 --min-workers 5
 --max-workers 200
 --cores 1 --memory 4096 --disk 10000
 --tasks-per-worker 4

Factory creates workers as needed:

Many batch systems supported:
SGE, Slurm, Condor, Torque, AWS Lambda, ...

Parsl + WQ

queue of tasks to be done

6

WQEX

task

worker process
result task

worker process

task

task

Parsl

Fine-grained
Resource Management

Resources Contract:
running several tasks in a worker concurrently

Worker has
available:

i cores
j MB of memory
k MB of disk

Task needs:

m cores
n MB of memory
o MB of disk

Task runs only if it fits in the currently
available worker resources.

Resources Contract example

Worker has
available:

8 cores
512 MB of memory
512 MB of disk

Task a:

4 cores
100 MB of memory
100 MB of disk

Tasks a and b may run in worker at the same time.
(Work could still run another 1 core task.)

Task b:

3 cores
100 MB of memory
100 MB of disk

Managing Resources

Do nothing (default if tasks don't declare cores, memory or disk):
One task per worker, task occupies the whole worker.

Honor contract (default if tasks declare resources):
Task declares cores, memory, and disk (all three of them!)
Worker runs as many concurrent tasks as will fit.
Tasks may use more resources than declared.

Automatic resource labeling:
Tasks are retried with resources that maximize throughput.

10

Automatic Resource Labeling:
When you don't know how big your tasks are

Tasks whose size
(e.g., cores, memory, and disk)

is not known until runtime.

workers

One task per worker:
Wasted resources, reduced throughput.

Many tasks per worker:
Resource contention/exhaustion,
reduced throughput 11

Task-in-the-Box

workers

12

Task-in-the-Box

Workers

Allocations
inside a worker

13

Task-in-the-Box

workers

One task per
allocation

One task per
allocation

14

Task-in-the-Box

workers

Task exhausted
its allocation

One task per
allocation

15

Task-in-the-Box

workers

Retry allocating a
whole worker

One task per
allocation

16

ND CMS example

Real result from a production High-Energy Physics CMS analysis
(Lobster NDCMS)

Histogram showing Peak Memory vs Number of Tasks
O(700K) tasks that ran in O(26K) cores managed by WorkQueue/Condor.

First-allocation that maximizes expected
throughput

(increase of %40 w.r.t. no task is retried)
Tovar, et.al
DOI:10.1109/TPDS.2017.2762310

http://dx.doi.org/10.1109/TPDS.2017.2762310

Scaling example (CANDLE)

oracle: exact resource requirements
auto: WQ’s autolabeling
guess: reasonable static guess
unmanaged: task consumes whole worker

Automatic Dependency
Management

Dependencies in Parsl Apps

@python_app
def do_something(x):

import numpy
y = numpy.linspace(0, 3, 100)
return numpy.sin(x + y)

Apps must explicitly
import dependencies

But when the task runs on workers....
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'numpy'

Dependencies in Parsl Apps

A shared FS can mask dependency issues: transfers happen
in the background without Parsl’s involvement

● Some batch systems (e.g. Condor) may lack shared FS support
● Can’t use shared FS across multiple sites
● Imports are a hidden cost:

○ Ever have to wait while workers import tensorflow ?
○ Shared FS performance can get worse at scale

Shaffer, et.al
DOI: 10.1145/3149393.3149401

http://dx.doi.org/10.1145/3149393.3149401

Dependency management with CCTools

@python_app
def do_something(x):

import numpy
y = numpy.linspace(0, 3, 100)
return numpy.sin(x + y)

{
 "channels": [
 "conda-forge",
 "defaults"
],
 "dependencies": [
 "python=3.7.6=cpython_h8356626_6",
 "numpy=1.19.1=py37h7ea13bd_2",
...

python_package_analyze

Dependency management with CCTools

{
 "channels": [
 "conda-forge",
 "defaults"
],
 "dependencies": [
 "python=3.7.6=cpython_h8356626_6",
 "numpy=1.19.1=py37h7ea13bd_2",
...

python_package_create env.tar.gz

Dependency management with CCTools

python_package_run

env.tar.gz

@python_app
def do_something(x):

import numpy
y = numpy.linspace(0, 3, 100)
return numpy.sin(x + y)

Success!

Automatic Dependency Management

The Work Queue Executor can handle these steps
automatically (remember this a beta feature, might need
some tinkering to get going)

Packages also include Python itself, so this works even if
Python is unavailable/wrong version on workers!

Works well with WQ’s built-in caching

Configuring the Work Queue Executor

autolabel=True
Use WQ’s resource monitoring to infer task requirements

autocategory=True
Track and label each App separately

pack=True
Prepare packaged environments for Python Apps

Demo

Test your setup

28

if the following command fails, check your Conda env
$ work_queue_worker --version
work_queue_worker version 7.0.13 FINAL from source (released 2019-05-14 09:42:11 -0400)
 Built by btovar@camd04.crc.nd.edu on 2019-05-14 09:42:11 -0400
 System: Linux camd04.crc.nd.edu 3.10.0-957.el7.x86_64 #1 SMP Thu Oct 4 20:48:51 UTC 2018
x86_64 x86_64 x86_64 GNU/Linux
 Configuration: --strict --build-label from source --build-date --tcp-low-port 9000
--sge-parameter -pe smp $cores --strict --with-cvmfs-path /opt/libcvmfs --with-uuid-path /opt/uuid
--prefix /var/condor/execute/dir_2578/cctools-fb72a868-x86_64-centos7

How do workers find the executor?

29

WQ Executor
worker process

catalog server
ccl.cse.nd.edu

my name is…
I am at ...

where is a project
with name …?

Task execution model

put inputs
into

sandbox

get outputs
from

sandbox

Parsl App

sandbox at
worker

30

Beware!
Tasks use entire worker on incomplete declarations

Worker has
available:

8 cores
512 MB of memory
512 MB of disk

Tasks a and b may NOT run in worker at the same time.
(disk resource is not specified.)

Task a:

4 cores
100 MB of memory

Task b:

3 cores
100 MB of memory

Create a worker (batch submission)

using \ to break the command in multiple lines
you can omit the \ and put everything in one line

run 3 workers in condor, each of size 1 cores, 2048 MB
of memory and 4096 MB of disk,
to serve my-app
and which timeout after 60s of being idle.

$ condor_submit_worker --cores 1 \
--memory 2048 \
--disk 4096 \

 -M my-app \
--timeout 60 \
3

Work Queue Factory -- conf file

$ work_queue_factory -Tcondor -C my-conf.json
$ cat my-conf.json
{

"master-name": "my-app",
"max-workers": 200,
"min-workers": 5,
"workers-per-cycle": 5,
"cores": 1,
"disk": 10000,
"memory": 4096,
"timeout": 900,
"tasks-per-worker": 4

}

the configuration file can be modified while the factory is running

What Work Queue does behind the scenes

1. Some tasks are run using full workers.
2. Statistics are collected.
3. Allocations computed to maximize throughput

a. Run task using guessed size.
b. If task exhausts guessed size, keep retrying on full (bigger) workers.

4. When statistics become out-of-date, go to 1.

