

Parsl Monitoring Message Flow

Ben Clifford

ParslFest 2025

August 2025

SQLite
database

monitoring
hub

parsl-
visualizeSQL access

As a user you interact with monitoring with these
components:

you configure the MonitoringHub object, and you get
an sqlite3 database, which is a file on disk, with
data about your workflow runs.

and you interact with it either using parsl-visualize or
by your own SQL code.

This talk is not about that - this talk is how data flows
into the database in the first place.

and on how you might fiddle with that flow, as part of
work I’ve been doing to make Parsl more modular
and hackable.

SQLite
database

monitoring
hub

task wrapper

RESOURCE_
INFO

more task info

block scaling
code

BLOCK_INFO

DFK
 WORKFLOW_INFO

TASK_INFO

parsl-
visualizeown script

NODE_INFO
(htex only)

db manager

The only process which writes to this sqlite3 database is the
“database manager” which sits alongside your submit side
workflow.

It receives *messages* from various components of Parsl saying
what is happening with that component. These messages
roughly but not exactly translate into rows in the monitoring
database.

TASK_INFO
RESOURCE_INFO (which is actually maybe two types?)
WORKFLOW_INFO
NODE_INFO
BLOCK_INFO

What monitoring messages look like is:
there are various sources of monitoring messages
(especially highlight which parts are also present in globus

compute - to help GC devs)

RESOURCE_INFO is actually two different kinds of message with
the same tag - would make sense to separate them [suggestion]

SQLite
database

multiprocessing.
Queue

task wrapper

resource
usage

more task info

block
scaling
code

- batch job
status

DFK
* workflow
start/end
* task info

db manager

parsl-
visualizeown script

(htex interchange)
manager/node

information

now I’m going to talk about the protocols that are used to get
messages from these components to the database manager
process.

closest to the database manager - the relevent bit of the monitoring
hub here is that it sets up a shared Python multiprocessing
queue. Any process in a multiprocessing group can put
messages into that queue; and the database manager takes
them out and processes them

so to begin with, all the messages from your main workflow submit
side process are sent that way - thats these ones in this process
box - workstart start/end, block information, task_info

SQLite
database

multiprocessing.
Queue

task wrapper

resource
usage

more task info

block
scaling
code

- batch job
status

DFK
* workflow
start/end
* task info

db manager

parsl-
visualizeown script

NODE_INFO
(htex only)

manager/node
information

zmq receiver

ZMQ

what about the other processes that aren’t in the multiprocessing
group? the processes running as task wrappers aren’t even on
the same computer - they’re on worker nodes. so there’s going
to have to be some kind of networking involved. and the
interchange is a completely separate unix process (for historical
reasons) even though its on the same host.

for this, there’s an abstraction called “monitoring radios” - nothing
too fancy. Different classes implement different protocols, but the
basic model is:

on one end, Parsl starts up a receiver in the multiprocessing group,
that receives messages and sticks them into that
multiprocessing.Queue - it’s a message forwarder/router.

on the other end, there’s a sender that knows how to get messages
to the receiver using that particular protocol.

the example I’ve added here is how the htex interchange can send
its NODE_INFO messages over ZMQ to a receiver with then
forwards it onwards into the database process. this probably
doesn’t even need to be its own process but could live as a
thread in the submit process -- but history has made it this way.

SQLite
database

multiprocessing.
Queue

task wrapper

resource
usage

more task info

block
scaling
code

- batch job
status

DFK
* workflow
start/end
* task info

db manager

parsl-
visualizeown script

NODE_INFO
(htex only)

manager/node
information

UDP receiver

From the task wrapper, which is potentially running
far away - the radio mechanism is pluggable. That’s
something I’ve worked on in the last year, with the
intention that you can swap in different
mechanisms here.

The original monitoring system used UDP - that’s
what this diagram is showing.

There’s a UDP receiver process -- similar to the ZMQ
one, it gateways messages from its own protocol
into the multiprocessing.Queue.

That mechanism is quite flawed though: the
monitoring database expects reliable message
delivery, and UDP does not provide that. This isn’t a
theoretical problem in some networking lecture --
it’s something I experienced with real applications.

SQLite
database

multiprocessing.
Queue

task wrapper

resource
usage

more task info

block
scaling
code

- batch job
status

DFK
* workflow
start/end
* task info

db manager

parsl-
visualizeown script

NODE_INFO
(htex only)

manager/node
information

filesystem receiver
shared fs

so the other option, which most executors have used
by default in recent years, is the filesystem radio.
That uses a shared filesystem directory: messages
are written to the filesystem by the sender, and
read out of the directory and fed into the queue by
a receiver process.

That’s still a network protocol - but using the word
“shared” to mean “network”.

This doesn’t perform very well - it is a huge tradeoff
from the very lightweight UDP to get reliability. But
as of the middle of this year, you can easily choose
between them.

Or, work on something better and plug it in.

SQLite
database

multiprocessing.
Queue

task wrapper

resource
usage

more task info

block scaling
code

- batch job status

DFK
* workflow
start/end
* task info

db manager

parsl-
visualizeown script

HTEX interchange

zmq receiver

ZMQ

HTEX TASKS

task wrapper
thread pool executor tasks

A couple of executors have their own special monitoring radios:

The thread executor runs tasks inside the submit side - which
means it has direct access to the multiprocessing.Queue.
There’s no need for a receiver. The radio sender can write
directly into the multiprocessing.Queue with no other
infrastructure.

HTEX has a channel back as far as the interchange for results.
That channel can be used for other stuff, like ... monitoring
messages. And the interchange already has a channel to deliver
messages into the multiprocessing.Queue, for NODE_INFO
messages. So this radio piggy backs worker monitoring
messages onto two channels that already exist.

SQLite
database

multiprocessing.
Queue

task wrapper

resource
usage

more task info

block
scaling
code

- batch job
status

DFK
* workflow
start/end
* task info

db manager

parsl-
visualizeown script

NODE_INFO
(htex only)

manager/node
information

???? receiver

YOUR CODE HERE

I’ve shown one place where I think there is fun to be had
plugging in different implementations - the monitoring
radios getting messages from worker to the submit side.

There are a couple of other places that we’ve tossed ideas
around for, but not made any production implementation:

* if you’re running inside a bigger system, maybe you don’t
want a parsl-specific task information database - maybe
you want your bigger system’s task information system to
be updated by Parsl monitoring messages. Swap out the
database manager - for something that pulls messages
off the queue and does something else with them.

* the task wrapper is quite inefficient. we’ve talked about
having a per-node single process that reports on tasks.
make the same RESOURCE_INFO messages, but send
them from that per-node monitor.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

