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The Problem: LMs are Outputting Memorized Information 



Need methods to Localize and 
Remove Memorized Information 
from LMs.
Auditing datasets is not always practical.

Retraining from scratch is too computationally costly.



How does Memorization Arise During Training?
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● ~ 1% of training data was noised
● After training we recover roughly ~20% of that noise!



Need methods to Mitigate and Remove Memorized 
Information from LMs

Method
Zero Ablate
Mean Ablate

% Memorized Clean Accuracy

- 21% 99%

Zero 0.3 % 87%

Activations 1% 95%

Slimming 8% 99%

Hard Concrete 6% 98%

Ablated 5 neurons per layer. 1% of neurons.



Experimental Workflow

1. Train 672 Toy LMs
a. 1 GPU/LM
b. 672 independent experiments

2. ~160 localization methods
a. 1 GPU/LM
b. 672 LMs * 160 Experiments ~100K independent experiment

3. Expand Analysis to 8 production-grade LMs:
a. 4 GPUs/LM for inference
b. 8 LMs * 160 Experiments = 1280 independent experiments

We use Parsl to manage this easy-to-parallelize workflow.

● Polaris
● Perlmutter



Results
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