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The Problem: LMs are Outputting Memorized Information

OpenAl Seeks to Dismiss Parts of The

Ne The suit does not include an exact monetary demand. But it says
the defendants should be held responsible for “billions of dollars in
statutory and actual damages” related to the “unlawful copying

penAl

Intk and use of The Times’s uniquely valuable works.” It also calls for
prodt the companies td destroy any chatbot modelsfnd training data he
ordin that use copyrighted material irom The Times.

articles at will.”




Need methods to Localize and
Remove Memorized Information
from LMs.

Auditing datasets is not always practical.

Retraining from scratch is too computationally costly.



How does Memorization Arise During Training?
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e 1000 noised 7, 18,000 clean 7, 19,000 clean 2/3/4/5
e ~ 1% of training data was noised
e After training we recover roughly ~20% of that noise!

Loss

Losses four_layer 5_mult_data_distributions
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Need methods to Mitigate and Remove Memorized

Information from LMs

Method
Zero Ablate
Mean Ablate

Zero
Activations

Slimming

Hard Concrete

% Memorized Clean Accuracy
21% 99%
0.3 % 87%
1% 95%
8% 99%
6% 98%

Ablated 5 neurons per layer. 1% of neurons.



Experimental Workflow

1. Train 672 Toy LMs
a. 1GPULM
b. 672 independent experiments

2. ~160 localization methods
a. 1 GPU/LM
b. 672 LMs * 160 Experiments ~100K independent experiment

3. Expand Analysis to 8 production-grade LMs:
a. 4 GPUs/LM for inference
b. 8 LMs * 160 Experiments = 1280 independent experiments

We use Parsl to manage this easy-to-parallelize workflow.

e Polaris
e Perimutter



Memorization % Diff.
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