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COMMUNICATION IN FEDERATED LEARNING

Client Driven and Server Driven Communications

(D Perform local training
@ Request global aggregation
@ Perform global aggregation

@ Send aggregated model

(a) Client-driven communication ’gRPC

() Send local training task
@ Perform local training
@ Send locally trained model

@ Perform global aggregation

(b) Server-driven communication g’_‘) globus
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BENEFITS OF GLOBUS COMPUTE

What benefits does Globus Compute (Server-driven communication)
provide?

Simple Experiment Launching and Testing

Simple Experiment Coordination

All codes and configurations reside on the server side, making experiment launching,
code/configuration updating, etc. as easy as serial experiments — there is no need to update code
for each client one by one

Robust Identity and Access Management

Simplifies the process to coordinate distributed training on heterogeneous computing resources
(e.g., with different job schedulers) — there is no need for each client to start “client launching job”
nearly at the same time.

Globus Compute integrates with Globus authentication for robust access management.

No Inbound Connectivity Requirements

Both the FL server and FL clients only require outbound traffic, without any inbound traffic
requirements, making resources FL server be setup on resources like Polaris.
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FL ON HETEROGENEOUS CLIENTS

Globus Compute Enables FL on Heterogeneous Clients

Arzonn: A
" JENERGY

L Google Cloud
Heterogeneous client computing resources. Resource under-utilization, especially
for powerful client machines
| 2 client_training crn-azure 2023-06-14 18:01:56 2023-06-14 18:02:12 15.66 sec
> client_training Polaris 2023-06-14 18:01:56 2023-06-14 18:02:12 15.83 sec
| 4 client_training delta-cpu-01 2023-06-14 18:01:56 2023-06-14 18:02:28 31.97 sec
> client_training delta-cpu02 2023-06-14 18:01:56 2023-06-14 18:02:35 39.09 sec

Different amount of local training times on heterogeneous client machines.
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RESOLVING HETEROGENEOUS CLIENTS

Asynchronous Federated Learning

= Asynchronous FL updates global model immediately once receiving local model from
each client — suffers from the stale (outdated) local models from slower clients, thereby
causing the global model to drift away from slower clients.
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RESOLVING HETEROGENEOUS CLIENTS

Asynchronous Federated Learning

= Asynchronous FL updates global model immediately once receiving local model from
each client — suffers from the stale (outdated) local models from slower clients, thereby
causing the global model to drift away from slower clients.
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RESOLVING HETEROGENEOUS CLIENTS

Asynchronous Federated Learning

= Asynchronous FL updates global model immediately once receiving local model from
each client — suffers from the stale (outdated) local models from slower clients, thereby
causing the global model to drift away from slower clients.
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RESOLVING HETEROGENEOUS CLIENTS

Asynchronous Federated Learning

= Asynchronous FL updates global model immediately once receiving local model from
each client — suffers from the stale (outdated) local models from slower clients, thereby
causing the global model to drift away from slower clients.
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RESOLVING HETEROGENEOUS CLIENTS

Asynchronous Federated Learning

= Asynchronous FL updates global model immediately once receiving local model from
each client — suffers from the stale (outdated) local models from slower clients, thereby
causing the global model to drift away from slower clients.
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RESOLVING HETEROGENEOUS CLIENTS

Asynchronous Federated Learning

= Asynchronous FL updates global model immediately once receiving local model from
each client — suffers from the stale (outdated) local models from slower clients, thereby
causing the global model to drift away from slower clients.

Trained on Model 0, but
global model is Model 4

T=01:05:00 - Local model from slower
& ~E WP Modelo clients are stale/oudated
/“\ et compared to the global model!
Model 4 § Client 1 l
ﬁ - (1) Either be detrimental to global model;

. (2) or applying a small importance weight
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RESOLVING HETEROGENEOUS CLIENTS

= “Synchronize” the arrival of clients’ locally trained models
— by assigning different numbers of local training steps to them
— according to the clients’ computing power

Server

(ZENERGY *75:

Assigned
Training steps
Steps
Clients
= ¥
Underlying - However, in practice
Computing “9”’,? (1.) Th(? server Fioes not know the .
’. , clients’ computing power beforehand;
Power “’f ¢‘§’ (2) And the computing power may

Assigning local training steps proportional to client’s computing power. change during the training.
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RESOLVING HETEROGENEOUS CLIENTS

Server
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(1) Estimate and update the computing power of each client on-the-fly;
C ti
ngrc:ruAl\:/ire (2) Synchronize the arrival of a group of client models by assigning
different number of tasks according to estimated computing power;
Scheduler
(3) Interact with the server aggregator to update global model using
one or a group of synchronized client local models.
Clients A A
A &

FedCompass - Federated learning with a computing power aware scheduler.

Li, Zilinghan, Pranshu Chaturvedi, Shilan He, Han Chen, Gagandeep Singh, Volodymyr Kindratenko, Eliu A.
N Huerta, Kibaek Kim, and Ravi Madduri. "FedCompass: efficient cross-silo federated learning on heterogeneous
(@ENERGY 55 client devices using a computing power aware scheduler." arXiv preprint arXiv:2309.14675 (2023). Argonne &




RESOLVING HETEROGENEOUS CLIENTS

Results
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NEXT STEPS

Connect Popular Cloud Providers for Low-cost (Cost-aware) FL

(ZENERGY *75:

Server

Cost-aware
scheduler for
low-cost FL

FL is important in medical applications, where
data privacy is paramount.

Many hospitals have their private data on Cloud
Storage (S3, Globus Cloud Storage, etc.) and
have their computing on the Cloud as well.
Training on GPU cloud instances can be costly.
AWS, Google, and Azure all have “spot
computing” — AWS Spot Instances, Google Cloud
Preemptable VMs, and Azure Spot VMs, which
provide a low-cost computing option, but can be
killed at any time with a short notice.

We would like to add cost-aware aspects to
compute-aware scheduler to reduce the cost for
FL experiments among heterogeneous cloud
computing providers using their spot instances,
and make the setup process as streamlined as
possible
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