Seesaw

Elastic Scaling for Task-Based Distributed
Programs

Matthew Chung

[TH RIVERSIDE



Current Implementation

Random selection from list of available High Throughput Executor
nodes
Firstin, first out queue for tasks Tasks =m_,m >

o Executor infershange
Good workload distribution ’

Compute Nodes
Poor elastic resource provisioning FIFO Task
o Ready Nodes




Updated Implementation

Two queues for tasks
Priority runtime-based queue
Original FIFO queue
Sorted list of ready nodes
Improved scaling behavior

Higher resource utilization

High Throughput Executor

Tasks

Executor

= -
H H

=
>E Es
H H
H

[TTTTT]
Interchange

!

FIFO Priority
Task Task
Queue Queue

Ready Nodes

Compute Nodes



Testing Methodolog

= Tested two different types of workloads: Cholesky Factorization and Synthetic
= Cholesky Factorization:

1 Representation of a dataflow based workflow

1 Varying influx of tasks over time

1 Run through TaPS
= Synthetic:

1 Representation of a bag-of-tasks workload

[1 3,000 sleep tasks with runtimes between 0 and 140 seconds

1 Log-normal right skew distribution

4 _



Cholesky Results - Random

]
—— Pilot 0
o
© 10
o |
o I
0+ |
— Pilot 1
—
T, 107
o
a
0! \ \ I
—— Pilot 2
N
™ 104
o
a
0% 20 40 60 80 100 120 140 160

Time to Solution (s)




Cholesky Results - Seesaw

—— Pilot 0

==

Pilot O

—— Pilot 1

=
oOuvo uiowm

Pilot 1
(@0,
=

[
(9]

—— Pilot 2

=
U O

o

[}
(9]

Pilot 3

[
ol O

o

=
S,

Pilot 4

[
oo

Pilot 4 Pilot 3 Pilot 2

o
o+

20 40 60 80 100 120 140 160
Time to Solution (s)



Synthetic Distribution

250+

200+

Frequency
(=]
ul
o

=
o
o

50+

0 20 40 60 80 100 120 140
Task Duration (s)



Synthetic Results

Utilization (%)

100+

80+

60

401

20+

WWI

|

Random scheduling

Greedy scheduling, Auto label 10%
Greedy scheduling, Auto label 20%
Greedy scheduling, Estimated label 10%
Greedy scheduling, Estimated label 20%
Greedy scheduling, Auto label 100%

Optimal Time to Solution
]

100 200 300 400 500
Time to Solution (seconds)

600

700




= Cholesky Factorization:

1 Significant improvement in ability to scale down

1 Similar time-to-solution

1 Reduction in compute resource usage, increase in utilization
= Synthetic:

1 Node sorting does not have much effect

1 Task sorting greatly improves time-to-solution

1 Utilization remains high in both methods

° _



Modular task labeling system

Testing other workloads

Guide/documentation update for new features




Questions?

Thank you for listening!

mRIVERSIDE



