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Current Implementation
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Updated Implementation

Two queues for tasks
Priority runtime-based queue
Original FIFO queue
Sorted list of ready nodes
Improved scaling behavior

Higher resource utilization
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Testing Methodolog

= Tested two different types of workloads: Cholesky Factorization and Synthetic
= Cholesky Factorization:

1 Representation of a dataflow based workflow

1 Varying influx of tasks over time

1 Run through TaPS
= Synthetic:

1 Representation of a bag-of-tasks workload

[1 3,000 sleep tasks with runtimes between 0 and 140 seconds

1 Log-normal right skew distribution
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Cholesky Results - Random
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Cholesky Results - Seesaw
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Synthetic Distribution
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Synthetic Results

Utilization (%)
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= Cholesky Factorization:

1 Significant improvement in ability to scale down

1 Similar time-to-solution

1 Reduction in compute resource usage, increase in utilization
= Synthetic:

1 Node sorting does not have much effect

1 Task sorting greatly improves time-to-solution

1 Utilization remains high in both methods
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Modular task labeling system

Testing other workloads

Guide/documentation update for new features




Questions?

Thank you for listening!
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