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I've been bothered by high-throughput searches for a decade

High-Throughput Searches
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https://www.sciencedirect.com/science/article/abs/pii/S1359645415006825
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

There are easy opportunities for adding intelligence

The Application The Data Flow Kernel The Worker

futures = |

do_science(task)

for task in everything ParSI Magic % SCience Eﬁort ‘%’

]

results = |
task.result()

for task in futures

]

report_findings(results)

Doing Nothing [ Hard at work &

Today's Talk: How can we make "The Application" smarter?




Getting More from Your HPC
with Colmena
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Active Learning Is a better plan, and not my idea at all

See also: Bayesian Optimization, Surrogate Optimization, Optimal Experimental Design...
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https://hackingmaterials.lbl.gov/rocketsled/

E\(’(;\,p How would be integrate these concepts into our application?



https://hackingmaterials.lbl.gov/rocketsled/

How can | do this with Parsl|?

Inside the Workflow: join_app Outside the Workflow: Events, Threads
General Idea: Tasks which make new tasks General Idea: Steering logic from “main.py”
Advantages: Advantages:
 DFK handles all effort » Clearer control over concurrency
o Simple instructions -> simple functions » Explicit control over shared state

* Respondto events besides “task complete”

Challenges:
 How should(!?) join_app tasks share state? Challenges:

« How would one write such a thing?




Colmena is a wrapper over Exascale Workflow tools
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Thinker Task Server Workers

Programming Model: Task Queues Task Server:
- Dispatches work requests to compute

# Primitive Units - Communicates results back to thinker

queue.send inputs (1)

result = queue.get result () Backend: _
= - Supports most HPC and cloud services
Programming Model: Agents - Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
class Thinker (BaseThinker) : - Future: Balsam, FuncX, RCT
@agent

def make work(self):
self.queue.send inputs (1)




Example application: “Interleaved,” Al-in-the-loop optimizer
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Colmena task requests
Inter-thread communication
Retasking nodes between jobs... ...yields more science per compute-hour.
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https://ieeexplore.ieee.org/abstract/document/9653177
https://colmena.readthedocs.io/en/latest/examples.html

So, what's new in ‘23?

Building more apps,
learning more
requirements!
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ExaMol: An attempt at user-friendly Colmena

Please, don’t look at vO-v4 our molecular design applications

Step 1. Write a spec Step 2: Execute

recipe = RedoxEnergy(charge=1, examol run spec.py:spec
compute config="'xtb")
spec = ExaMolSpecification(
database="training-data.json',
recipe=[recipe],
search_space='search _space.smi',
selector=GreedySelector(n_to select=8),
simulator=ASESimulator(scratch dir="/tmp"'),
scorer=RDKitScorer(recipe),
models=[ [KNeighborsRegressor()]],
num_to_run=8§,
thinker=SingleStepThinker,
compute_config=config,
run_dir="run'
) https://exalearn.qithub.io/ExaMol/
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E\(E\)F’ ==c  Disclosure: | watch to see how Alex Brace does things



https://exalearn.github.io/ExaMol/

MOFA: Persistent workers would save time

Large start-up cost,
but always running
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https://github.com/qglobus-labs/mof-generation-at-scale



https://github.com/globus-labs/mof-generation-at-scale

FFF. Could | schedule tasks based on worker availability?

Success: We can run on two systems easily
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Why? Training sets would grow stale in queues

https://github.com/exalearn/fast-finetuned-forcefields*
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= \(C\\F’ *I want to merge this with PsiFlow!



https://github.com/exalearn/fast-finetuned-forcefields*

Conclusions and Future for Colmena

What did we build?

Colmena lets you build complex steering policies
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Inter-thread communication

.. that get more out of your HPC
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What to watch for next year?

 More Colmena applications
— PsiFlow: If Sander agrees

— ExaMol: Maybe with some Real Chemist users
— MOFA: A target for many Al apps on ExaScale
— Jitterbug: GH/globus-labs/faster-molecular-hessians/

« Continued integration with Parsl/Globus Compute
— Demonstrating Yadu’s MPI support?
— Apps that produce intermediate results?
— Events and Hooks from Providers?



https://github.com/globus-labs/faster-molecular-hessians/
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