Colmena: Parsl for Intelligent Workflows
on Exascale HPC -

oy |
= (D 25
Cleared for public release \(\) PROJECT
L

Logan Ward

Assistant Computational Scientist
Data Science and Learning Division
Argonne National Laboratory

17 October 2023
V. R ﬂ 6% Offi f
VAT {0)ENERGY | oo

tional Nuciear Secu

§
3

I've been bothered by high-throughput searches for a decade

High-Throughput Searches
21 |
25 10§
£ 20 8 E
g . 6 T Each pointis ~5 CPU-hr
T a5 |~ (~2.5 kW-hr, ~500g coal burned*)
9 1.0 (2)/?5/
- ol —2E
5 0.0/ : -42
-6'%
035 3.0 3.5 4.0 4.5 5.0 >
Lattice Parameter [A] -
b i1 Solution: Machine L _ There are few reasons
otential Solution: Machine Learning we should be running brute-force

Figure: Kirklin et al. Acta Mat (2016)

VP e
B P == *Assuming 500W node, US EPA Greenhouse Gas Calculator

https://www.sciencedirect.com/science/article/abs/pii/S1359645415006825
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

There are easy opportunities for adding intelligence

The Application The Data Flow Kernel The Worker

futures = |

do_science(task)

for task in everything ParSI Magic % SCience Eﬁort ‘%’

]

results = |
task.result()

for task in futures

]

report_findings(results)

Doing Nothing [Hard at work &

Today's Talk: How can we make "The Application" smarter?

Getting More from Your HPC
with Colmena

—
\ EXASCALE
) COMPUTING
\ PROJECT
S

Active Learning Is a better plan, and not my idea at all

See also: Bayesian Optimization, Surrogate Optimization, Optimal Experimental Design...

Fit models with fewer simulations

0.331 —&— random

—A— entropy based
L [Learn regression] % o
\ 0 "
[Apply model to]

model %,
“ ADAPTIVE

MOCU

model predictions o 2 4 6 8 10 12 14 16 18
DES’GN Wlth uncertainties Number of updates
Courtesy of: Byung-Jun Yoon
Measurement or Select Find better materials faster
Calculation candidate "

__/

Success
(Material with desired property)

Figure: Balachandran et al. Sci. Rep. (2016), 19660.

0 500 000 1500 2000 2500 3000 3500 4000
nnnnnnnnnnnnnnnnnnnnnnnnnnnnn

https://hackingmaterials.lbl.gov/rocketsled/

E\(’(;\,p How would be integrate these concepts into our application?

https://hackingmaterials.lbl.gov/rocketsled/

How can | do this with Parsl|?

Inside the Workflow: join_app Outside the Workflow: Events, Threads
General Idea: Tasks which make new tasks General Idea: Steering logic from “main.py”
Advantages: Advantages:
 DFK handles all effort » Clearer control over concurrency
o Simple instructions -> simple functions » Explicit control over shared state

* Respondto events besides “task complete”

Challenges:
 How should(!?) join_app tasks share state? Challenges:

« How would one write such a thing?

Colmena is a wrapper over Exascale Workflow tools

o r
§redis |
Request » i_ Work
Result :m Result

Thinker Task Server Workers

Programming Model: Task Queues Task Server:
- Dispatches work requests to compute

Primitive Units - Communicates results back to thinker

queue.send inputs (1)

result = queue.get result () Backend: _
= - Supports most HPC and cloud services
Programming Model: Agents - Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
class Thinker (BaseThinker) : - Future: Balsam, FuncX, RCT
@agent

def make work(self):
self.queue.send inputs (1)

Example application: “Interleaved,” Al-in-the-loop optimizer

o o M e M R R M M R R Em RN M M M R Em REm M M M M e REm REm R M M M R REm R M M M e R m R e M M e e e e

/7 N
! gﬁLMolecule Queue \
Thinker Record ¥ Model Library :
I
. :
| - |
'\l_()C-chrer | QC-Recorder Trainer Updater ML-Scorer ML-Recor‘der‘/I
S S St e S o S
Sener Simulation (WChem) Training (TF,Torch) Inference (TF,Torch) /'
Colmena task requests
Inter-thread communication
Retasking nodes between jobs... ...yields more science per compute-hour.
-O y [T 1 | 1 I 1
Q 1000 __ 1299 —— no-retrain ! : !
2 g0 - > 100 4 == random l : | i
8 2 80 4 —— update-8 : i :? i
S 600 - N i | l i | i
9 A i | l i | i
2 400 a 7 . l i | i
< Z 2041 : . .
© 200 - o4 i : : - : I
-8 E) 1 2 ; 4 5 6
= 0-

Time (h)

COMPUTIN

i
E\([;\)F’ == Details: Ward et al. MLAHPC, SC21. Tutorial: colmena.rtfd.io/en/latest/examples.html#tutorials

https://ieeexplore.ieee.org/abstract/document/9653177
https://colmena.readthedocs.io/en/latest/examples.html

So, what's new in ‘23?

Building more apps,
learning more
requirements!

—
\ EXASCALE
) COMPUTING
\ PROJECT
S

ExaMol: An attempt at user-friendly Colmena

Please, don’t look at vO-v4 our molecular design applications

Step 1. Write a spec Step 2: Execute

recipe = RedoxEnergy(charge=1, examol run spec.py:spec
compute config="'xtb")
spec = ExaMolSpecification(
database="training-data.json',
recipe=[recipe],
search_space='search _space.smi',
selector=GreedySelector(n_to select=8),
simulator=ASESimulator(scratch dir="/tmp"'),
scorer=RDKitScorer(recipe),
models=[[KNeighborsRegressor()]],
num_to_run=8§,
thinker=SingleStepThinker,
compute_config=config,
run_dir="run'
) https://exalearn.qithub.io/ExaMol/

COMPUTING
PROJECT

E\(E\)F’ ==c Disclosure: | watch to see how Alex Brace does things

https://exalearn.github.io/ExaMol/

MOFA: Persistent workers would save time

Large start-up cost,
but always running

Generate Calculate

R '_ H .
Linkers MOE Database Properties

Train

5 t . .
urrogates Ezﬁﬁ Priority Queue

i.. Model Library T

T

Assemble 3D I_P Estimate
Structure Properties

https://github.com/qglobus-labs/mof-generation-at-scale

https://github.com/globus-labs/mof-generation-at-scale

FFF. Could | schedule tasks based on worker availability?

Success: We can run on two systems easily

Record | l%c,o T
Calculaton ['Selection Y 4] I I I I I
Queue |’—L3 0
v Slmulatlon [Sampllng . Tralnlng B Inference
> 8 CPU
: d Audit Selector 847 |
. Trajectory 00
Tralner List g]n Queue _ 0 T T T T T T T
Jda O 2
= = GPU === CPU L
8
Sampler C (-f——— T T T T T
e P Str‘ugtur'e O 000 025 050 075 1.00 1.25 150 1.75 2.00
RS = Choices Walltime (hr)
L AT -
Model Library Ugly Secret: We only do this if GPUs available quickly

Why? Training sets would grow stale in queues

https://github.com/exalearn/fast-finetuned-forcefields*

EEEEEEE

= \(C\\F’ *I want to merge this with PsiFlow!

https://github.com/exalearn/fast-finetuned-forcefields*

Conclusions and Future for Colmena

What did we build?

Colmena lets you build complex steering policies

N

l %m 'Molecule Queue|

(. Record | Model Librar
S
: e [L'EI]
1 -
C-S C-R d Trainer Updat ML-S ML-R d
\| QC-Scorer | | QC-Recorder | | | updater | corer ecorder |’

Task [¥ """~~~ ""®"- """ " """V TR TV TTTATCTCT !
Server

Colmena task requests
Inter-thread communication

.. that get more out of your HPC

_ 1201 —— no-retrain
o 801 . update-8 et
= 60 i L~
A ! g
40 o
s 21 A
=z 2091 /
04 =&
1 1
0 1 2 3 4 5 6
Time (h)
o
ECP &=
\ 3

What to watch for next year?

 More Colmena applications
— PsiFlow: If Sander agrees

— ExaMol: Maybe with some Real Chemist users
— MOFA: A target for many Al apps on ExaScale
— Jitterbug: GH/globus-labs/faster-molecular-hessians/

« Continued integration with Parsl/Globus Compute
— Demonstrating Yadu’s MPI support?
— Apps that produce intermediate results?
— Events and Hooks from Providers?

https://github.com/globus-labs/faster-molecular-hessians/

Acknowledgements: The (growing!) team

Argonne: ExalLearn — Using Al with HPC

Yadu Babuji, Ben Blaiszik, Ryan Chard, Kyle Chard,
lan Foster, Greg Pauloski, Ganesh Sivaraman,
Rajeev Thakur

MolSSI — Workflows for qguantum chemistry
Lori A. Burns, Daniel Smith, Matt Welborn,
many other open-source contributors

Argonne: JCESR — Molecular modeling for batteries
Rajeev Assary, Larry Curtiss, Naveen Dandu,
Paul Redfern

PNNL: ExalLearn — Graph algorithms for learning
Sutanay Choudhury, Jenna Pope

BNL: ExaLearn — Optimal experimental design
Frank Alexander, Shantenu Jha, Kris Reyes, Li Tan,
Byung Jun, and more

FuncX — Seamless multisite deployment
Kevin Hunter Kesling, Kyle Chard, Ryan Chard,
Ben Clifford, and more

Argonne ALCF — Al, Data and Simulation on HPC
Murali Emani, Alvaro Vazquez-Mayagoitia,
Venkat Vishnawath

ExaWorks — Interfacing to HPC
Ayman Alsaadi, Matteo Turilli,
Shantenu Jha, Kyle Chard

Ensemble Group — Defining ensemble needs
John-Luke Navarro, Jonathon Ozik, Tom Peterka,
Stephen Hudson, Orcun Yildiz, Alex Brace,
Arvind Ramanathan, and more

	Slide 1: Colmena: Parsl for Intelligent Workflows on Exascale HPC
	Slide 2: I've been bothered by high-throughput searches for a decade
	Slide 3: There are easy opportunities for adding intelligence
	Slide 4: Getting More from Your HPC with Colmena
	Slide 5: Active Learning is a better plan, and not my idea at all
	Slide 6: How can I do this with Parsl?
	Slide 7: Colmena is a wrapper over Exascale Workflow tools
	Slide 8: Example application: “Interleaved,” AI-in-the-loop optimizer
	Slide 9: So, what’s new in ‘23? Building more apps, learning more requirements!
	Slide 10: ExaMol: An attempt at user-friendly Colmena
	Slide 11: MOFA: Persistent workers would save time
	Slide 12: FFF: Could I schedule tasks based on worker availability?
	Slide 13: Conclusions and Future for Colmena
	Slide 14: Acknowledgements: The (growing!) team

