
Cleared for public release

Colmena: Parsl for Intelligent Workflows
on Exascale HPC

Logan Ward
Assistant Computational Scientist
Data Science and Learning Division
Argonne National Laboratory

17 October 2023

2

I've been bothered by high-throughput searches for a decade

Figure: Kirklin et al. Acta Mat (2016)

Each point is ~5 CPU-hr
(~2.5 kW-hr, ~500g coal burned*)

There are few reasons
we should be running brute-force

*Assuming 500W node, US EPA Greenhouse Gas Calculator

https://www.sciencedirect.com/science/article/abs/pii/S1359645415006825
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

3

There are easy opportunities for adding intelligence

The Application

futures = [

do_science(task)

for task in everything

]

results = [

task.result()

for task in futures

]

report_findings(results)

The Data Flow Kernel

Parsl Magic ✨

The Worker

Science Effort ⚛

Hard at work 🥵Doing Nothing 🥱

Today's Talk: How can we make "The Application" smarter?

Getting More from Your HPC
with Colmena

5

Active Learning is a better plan, and not my idea at all
See also: Bayesian Optimization, Surrogate Optimization, Optimal Experimental Design…

Figure: Balachandran et al. Sci. Rep. (2016), 19660.

Fit models with fewer simulations

Find better materials faster

https://hackingmaterials.lbl.gov/rocketsled/

Courtesy of: Byung-Jun Yoon

How would be integrate these concepts into our application?

https://hackingmaterials.lbl.gov/rocketsled/

6

How can I do this with Parsl?

Inside the Workflow: join_app

General Idea: Tasks which make new tasks

Advantages:

• DFK handles all effort

• Simple instructions -> simple functions

Challenges:

• How should(!?) join_app tasks share state?

Outside the Workflow: Events, Threads

General Idea: Steering logic from “main.py”

Advantages:

• Clearer control over concurrency

• Explicit control over shared state

• Respond to events besides “task complete”

Challenges:

• How would one write such a thing?

7

Colmena is a wrapper over Exascale Workflow tools

Programming Model: Task Queues

Primitive Units

queue.send_inputs(1)

result = queue.get_result()

Task Server:
- Dispatches work requests to compute
- Communicates results back to thinker

Backend:
- Supports most HPC and cloud services
- Easily configure multiple worker types, multi-site workflows
- Limited support for ensembles of MPI applications
- Future: Balsam, FuncX, RCT

Programming Model: Agents

class Thinker(BaseThinker):

 @agent

 def make_work(self):

 self.queue.send_inputs(1)

8

Example application: “Interleaved,” AI-in-the-loop optimizer

Inter-thread communication
Colmena task requests

 inker

 ask

Server

Retasking nodes between jobs… …yields more science per compute-hour.

Details: Ward et al. ML4HPC, SC21. Tutorial: colmena.rtfd.io/en/latest/examples.html#tutorials

https://ieeexplore.ieee.org/abstract/document/9653177
https://colmena.readthedocs.io/en/latest/examples.html

So, w at’s new in ‘23?

Building more apps,
learning more
requirements!

10

ExaMol: An attempt at user-friendly Colmena

Step 1: Write a spec

recipe = RedoxEnergy(charge=1,

compute_config='xtb')

spec = ExaMolSpecification(

database='training-data.json',

recipe=[recipe],

search_space='search_space.smi',

selector=GreedySelector(n_to_select=8),

simulator=ASESimulator(scratch_dir='/tmp'),

scorer=RDKitScorer(recipe),

models=[[KNeighborsRegressor()]],

num_to_run=8,

thinker=SingleStepThinker,

compute_config=config,

run_dir='run'

)

Step 2: Execute

examol run spec.py:spec

Disclosure: I watch to see how Alex Brace does things 🤫

Please, don’t look at v0-v4 our molecular design applications

https://exalearn.github.io/ExaMol/

https://exalearn.github.io/ExaMol/

11

MOFA: Persistent workers would save time

Large start-up cost,
but always running

https://github.com/globus-labs/mof-generation-at-scale

https://github.com/globus-labs/mof-generation-at-scale

12

FFF: Could I schedule tasks based on worker availability?

Ugly Secret: We only do this if GPUs available quickly
Why? Training sets would grow stale in queues

Success: We can run on two systems easily

https://github.com/exalearn/fast-finetuned-forcefields*

*I want to merge this with PsiFlow!

https://github.com/exalearn/fast-finetuned-forcefields*

13

Conclusions and Future for Colmena

What did we build?

Colmena lets you build complex steering policies

… t at get more out of your HPC

What to watch for next year?

• More Colmena applications

– PsiFlow: If Sander agrees 😀

– ExaMol: Maybe with some Real Chemist users

– MOFA: A target for many AI apps on ExaScale

– Jitterbug: GH/globus-labs/faster-molecular-hessians/

• Continued integration with Parsl/Globus Compute

– Demonstrating Yadu’s MPI support?

– Apps that produce intermediate results?

– Events and Hooks from Providers?

https://github.com/globus-labs/faster-molecular-hessians/

14

Acknowledgements: The (growing!) team

Argonne: ExaLearn – Using AI with HPC
Yadu Babuji, Ben Blaiszik, Ryan Chard, Kyle Chard,
Ian Foster, Greg Pauloski, Ganesh Sivaraman,
Rajeev Thakur

Argonne: JCESR – Molecular modeling for batteries
Rajeev Assary, Larry Curtiss, Naveen Dandu,
Paul Redfern

MolSSI – Workflows for quantum chemistry
Lori A. Burns, Daniel Smith, Matt Welborn,
many other open-source contributors

PNNL: ExaLearn – Graph algorithms for learning
Sutanay Choudhury, Jenna Pope

BNL: ExaLearn – Optimal experimental design
Frank Alexander, Shantenu Jha, Kris Reyes, Li Tan,
Byung Jun, and more

Argonne ALCF – AI, Data and Simulation on HPC
Murali Emani, Alvaro Vazquez-Mayagoitia,
Venkat Vishnawath

ExaWorks – Interfacing to HPC
Ayman Alsaadi, Matteo Turilli,
Shantenu Jha, Kyle Chard

FuncX – Seamless multisite deployment
Kevin Hunter Kesling, Kyle Chard, Ryan Chard,
Ben Clifford, and more

Ensemble Group – Defining ensemble needs
John-Luke Navarro, Jonathon Ozik, Tom Peterka,
Stephen Hudson, Orçun Yildiz, Alex Brace,
Arvind Ramanathan, and more

	Slide 1: Colmena: Parsl for Intelligent Workflows on Exascale HPC
	Slide 2: I've been bothered by high-throughput searches for a decade
	Slide 3: There are easy opportunities for adding intelligence
	Slide 4: Getting More from Your HPC with Colmena
	Slide 5: Active Learning is a better plan, and not my idea at all
	Slide 6: How can I do this with Parsl?
	Slide 7: Colmena is a wrapper over Exascale Workflow tools
	Slide 8: Example application: “Interleaved,” AI-in-the-loop optimizer
	Slide 9: So, what’s new in ‘23? Building more apps, learning more requirements!
	Slide 10: ExaMol: An attempt at user-friendly Colmena
	Slide 11: MOFA: Persistent workers would save time
	Slide 12: FFF: Could I schedule tasks based on worker availability?
	Slide 13: Conclusions and Future for Colmena
	Slide 14: Acknowledgements: The (growing!) team

