
Parsl+TaskVine: Bridging the Data Gap for
High-Performance Scientific Workflows in Python

Thanh Son Phung and the CCL Team
University of Notre Dame
ParslFest 2023
Chicago, IL October 2023

Background

Invoke arbitrary Function, remotely

foo object args+
kwargs

Serialize Serialize

foo.file args.file

Compute Node

Foo

foo.file args.file

Done, right?

Keyword: Arbitrary!!

Background

Invoke arbitrary Function, remotely Parsl users see:
- Function object
- args + kwargs

Under-the-hood:
- Package Dependencies
- Input Files
- Output Files
- Intermediate/Temporary
Files (function chaining,

y = f(g(x)))

Background

Invoke arbitrary Function,
remotely

Parsl users see:
- Function object
- args + kwargs

Under-the-hood
- Package
Dependencies
- Input Files
- Output Files
- Intermediate
/Temporary Files
(function chaining,

y = f(g(x)))

Tech Stack

Shared File Systems

GPFS

Problem

ClusterShared File System

MDS MDS MDS

DS DSDS

DS DS DS

Compute Node

foo

Compute Node

foo

Compute Node

foo

Compute Node

foo

- Shared File System only gradually reacts to huge
system loads at startup time.
- Caches aren’t effective with one-time setups.
- Happens over the course of a workflow execution.

Solution: Parsl+TaskVine

Cluster

TaskVine Worker

foo

TaskVine Worker

foo

TaskVine Worker

foo

TaskVine Worker

foo

 TaskVine Novelties
- Explicit Data Placement with
Data-to-Task Bindings!
- Data Stays in Cluster until Not Needed.
- No remote I/O! Only local I/O over the
course of a workflow execution.
- No shared fs overloading!

new

Insights
- Costly to move data in and out of cluster.
- Unused local disk storage on compute
nodes.
- Data from other nodes aren’t used.

Solution: Example

Cluster

TaskVine Worker

foo

TaskVine Worker

foo

TaskVine Worker

foo

TaskVine Worker

foo

new

TaskVine Executor/
Manager Process

(1) args+kwargs
(2) x,y,z
dependencies (3) foo object

file

(4) “bar” input file

Parsl DFK

Evaluation: Data Distribution Method

Workflow Specification and Setup:
- 2048 function invocations
- Each invocation trains a NN model in 5 minutes.
- Data dependencies include software dependencies
(zipped: ~1GB, unzipped: ~3GBs) and dataset
(zipped: 17MBs, unzipped: 25MBs).
- Each compute node has 16 cores, 16GBs of
memory and disk, and runs 8 tasks concurrently.
- Each worker has access to the local panasas
shared file system.
- Varying number of workers -> varying amount of
concurrent tasks -> varying pressure on the shared
file system.

-> TaskVine is more scalable.
Maximizing Data Utility for HPC Python Workflow Execution, HPPSS at SC 2023.

http://ccl.cse.nd.edu/research/papers/hppss-sc2023.pdf

Optimization: Serverless

Benefits:
- Don’t invoke fresh interpreter everytime.
- Minimal impact for import statements. (`import tensorflow` takes 5-10 seconds!)
- Function object already in process memory, only loads arguments from file.

Regular Way: Starting a fresh Python interpreter
process for every function call.

Serverless: Fork a current process for every
function call.

Worker

python
function.py

python
function.py

python
function.py

Worker Library

func

func

func

fork

fork

fork

python

Evaluation: Serverless

Run of 20,000 simple functions on a local
machine with:
- regular way (711s, not shown) and
- serverless (~50x speedup, on right)

-> Great for short-running functions!

TaskVine: Managing In-Cluster Storage for High-Throughput Data
Intensive Workflows, WORKS at SC 2023.

http://ccl.cse.nd.edu/research/papers/taskvine-works-2023.pdf
http://ccl.cse.nd.edu/research/papers/taskvine-works-2023.pdf

Try it now!

1) Install via conda (recommended):

2) Change configuration of executor:

3) More examples: https://cctools.readthedocs.io/en/stable/taskvine/#workflow-integration

https://cctools.readthedocs.io/en/stable/taskvine/#workflow-integration

Current Status of TaskVine

12

● TaskVine is a component of the
Cooperative Computing Tools (cctools)
from Notre Dame alongside Makeflow,
Poncho, Resource Monitor, etc.

● Research software with an engineering
process: issues, tests, manual, examples.

● We are eager to collaborate with new
users on applications and challenges!

This work was supported by
NSF Award OAC-1931348

http://cctools.readthedocs.io

