UNIVERSITY OF

5) NOTRE DAME

Parsl+TaskVine: Bridging the Data Gap for
High-Performance Scientific Workflows in Python

Thanh Son Phung and the CCL Team
University of Notre Dame

ParslFest 2023

Chicago, IL October 2023

CCTools ~

CCTools
Background _——

Invoke arbitrary Function, remotely
def foo(*args, **kwargs):

[foo object } [kargs+ }
wargs

Serialize Serialize

Compute Node

>

8 - ————————————— Done, right?

Keyword: Arbitrary!! }

foo.file args.file [

CCTools

Background

Invoke arbitrary Function, remotely
def foo(*args, **kwargs):

Parsl users see:
- Function object
- args + kwargs

Under-the-hood:

- Package Dependencies
- Input Files

- Output Files

- Intermediate/Temporary
Files (function chaining,

y =f(g(x))

def foo(*args, **kwargs):
import Xx
import y
from z import a, b, ¢

input file(s)
with open('bar', 'r') as f:

output file(s)
with open('tmp', 'w') as f:

Background

Invoke arbitrary Function,

def foo(*args, **kwargs):

def foo(*args, **kwargs):
import x
import y
from z import zz

#'input file(s)
with open('bar', '

output file(s)
with open('tmp', 'w') as f:

Parsl users see:
- Function object
- args + kwargs

Under-the-hood

- Package
Dependencies

- Input Files

- Output Files

- Intermediate
[Temporary Files
(function chaining,

y =f(g(x)))

CCTools

Tech Stack

Shared File Systems

Lustre

GPFS

PANASAS

CCTools

Problem

Shared File System Cluster

}_ - Compute Node Compute Node

a

|

|

|

MDS [MDS }i[MDS |«--{-—---— o AN
I Sr---
| | SRR N J

RS R
Compute Node_ _ Compute Node

e N e N \\‘\\ .
DS [DS] DS
\ J \ J _ %

() ()
PS [PS } DS - Shared File System only gradually reacts to huge

b . system loads at startup time.
- Caches aren’t effective with one-time setups.

- Happens over the course of a workflow execution.

CCTools

Solution: Parsl+TaskVine

Cluster Insights
- Costly to move data in and out of cluster.
- Unused local disk storage on compute
TaskVine Worker TaskVine Worker nodes.
new ‘ - Data from other nodes aren’t used.
foo
TaskVine Novelties

- Explicit Data Placement with
Data-to-Task Bindings!

- Data Stays in Cluster until Not Needed.
- No remote 1/O! Only local I/O over the
course of a workflow execution.

- No shared fs overloading!

TaskVine Worker

Solution: Example

def foo(*args, **kwargs):
import x
import y
from z import a, b, c

input file(s)
with open('bar', 'r') as f:

output file(s)
with open('tmp', 'w') as f:

Pars| DFK

(1) args+kwargs askVine Worker

TaskVine Executor/,
Manager Process

. _

CCTools

Cluster

TaskVine Worker TaskVine Worker

- ‘
foo

(4) "bar” input file

askVine Worker

(3) foo object
file

Evaluation: Data Distribution Method

Workflow Specification and Setup:

- 2048 function invocations

- Each invocation trains a NN model in 5 minutes.

- Data dependencies include software dependencies
(zipped: ~1GB, unzipped: ~3GBs) and dataset
(zipped: 17MBs, unzipped: 25MBs).

- Each compute node has 16 cores, 16GBs of
memory and disk, and runs 8 tasks concurrently.

- Each worker has access to the local panasas
shared file system.

- Varying number of workers -> varying amount of
concurrent tasks -> varying pressure on the shared
file system.

-> TaskVine is more scalable.

2000 +

1000 -

0_

. _

CCTools

Workflow execution time

B shared-fs

 vine B vine-hot

32 64 128 256

Maximizing Data Utility for HPC Python Workflow Execution, HPPSS at SC 2023. Number of workers

http://ccl.cse.nd.edu/research/papers/hppss-sc2023.pdf

CCTools

Optimization: Serverless

Regular Way: Starting a fresh Python interpreter Serverless: Fork a current process for every
process for every function call. function call.

function.py

Benefits:

- Don’t invoke fresh interpreter everytime.

- Minimal impact for import statements. (‘'import tensorflow’ takes 5-10 seconds!)
- Function object already in process memory, only loads arguments from file.

__..._ _

CCTools

Evaluation: Serverless

20000 simple functions execution time with

Run of 20,000 simple functions on a local Josk\ine sepvariessy locnl maching
machine with: 35 1
- regular way (711s, not shown) and
- serverless (~50x speedup, on right) l
sz 25 A
-> Great for short-running functions! g 201
é 15 4

10 A

TaskVine: Managing In-Cluster Storage for High-Throughput Data ¢ 0 1 M 4 8
Intensive Workflows, WORKS at SC 2023.

Number of function slots

http://ccl.cse.nd.edu/research/papers/taskvine-works-2023.pdf
http://ccl.cse.nd.edu/research/papers/taskvine-works-2023.pdf

CCTools

1) Install via conda (recommended):

conda install -c conda-forge ndcctools parsl

2) Change configuration of executor:

from parsl.config import Config
from parsl.executors.taskvine import TaskVineExecutor, TaskVineManagerConfig

manager config = TaskVineManagerConfig(project name='test')

executor = TaskVineExecutor(label="t: "
worker launch method='manual’,
manager config=manager config)

config = Config(executors=[executor])

3) More examples: https://cctools.readthedocs.io/en/stable/taskvine/#workflow-integration

https://cctools.readthedocs.io/en/stable/taskvine/#workflow-integration

Current Status of TaskVine

2

This work was supported by
NSF Award OAC-1931348

e TaskVine is a component of the S — — SO
Cooperative Computing Tools (cctools))
from Notre Dame alongside Makeflow,
Poncho, Resource Monitor, etc.
e Research software with an engineering ek et bl
process: issues, tests, manual, examples. e owien for
e \We are eager to collaborate with new
users on applications and challenges!

/ Software / TaskVine + 88

+* TaskVine

cisitin;
TaskVine is a framework for building large scale data intensive dynamic workflows that run on high b builgl
omputing (HPC) clusters, GPU clusters, s, and other distributed !

performan ud service proy

matics,
computing systems. A workflow is a collection of programs and files that are organized in a graph

structure, allowing parts of the workflow to run in a parallel, reproducible way:

A TaskVine workflow requires a manager and a large number of worker processes. The application
- generates a large number of small tasks, which are distributed to workers. As tasks access external
h tt - I / C ct 00 I s.rea d t h e d OCS.i0 data sources and prodiuce thelf own outputs, more and more data i pulled into local storage on
p L] [] L] cluster nodes. This data is used to accelerate future tasks and avoid re-computing exisiting res
The application gradually grows "like a vine" through the cluster.

——— -

