
October 20, 2023
Pete Mendygral, HPC&AI Cloud Services

A High-Performance Parsl Executor
Based on Dragon

• Dragon
• Composable distributed run-time for managing dynamic processes,

memory, and data at scale through high-performance communication
objects

• Core interfaces for Python/C/C++/Fortran*

• Higher level interfaces for targeted use-cases
– Standard Python multiprocessing API

– Transparently scales efficiently across many nodes
– Validated against CPython unit tests

– Other interfaces in roadmap, like Parsl!

• Self-contained with minimal external dependencies

• Open source: https://github.com/DragonHPC/dragon
– Developed and maintained by HPE and community

• Dragon executor for Parsl
• Implemented with multiprocessing and Dragon-native APIs
• First target @python_app
• https://github.com/DragonHPC/dragon/blob/main/src/dragon/workflows/parsl_batch_executor.

py

What did we do?

• 2*Core interfaces not yet in all languages listed

https://github.com/DragonHPC/dragon

• 3

• Cray EX with AMD processors
• Benchmark run inside existing allocation

Parsl+Dragon Benchmarking

~3.2X
improvement

~1.7X
improvement

• Dragon data gathered with RDMA-enabled transport (HSTA)
• https://github.com/DragonHPC/dragon/blob/main/examples/multiprocessing/n

umpy-mpi4py-examples/parsl_batched_scipy_scale_work.py

• 4

Parsl @mpi_app with Dragon

> dragon parsl_mpi_app_demo.py
mpi computation: 0.000100 * 362880.000000 + 10.000000 = 46.288000, exact = 46.288000000000004

input args to function is arbitrary.
Return tuple is most important
@mpi_app
def mpi_factorial_app(num_ranks: int, bias: float,
 policy: Policy = None):
 import os

 # executable located in run_dir that we want to launch
 exe = "factorial"
 run_dir = os.getcwd()
 # list of the mpi args we want to pass to the app
 mpi_args = [str(bias)]
 # format that is expected by the DragonMPIExecutor
 return exe, run_dir, policy, num_ranks, mpi_args

def main():
 mp.set_start_method("dragon")

 config = Config(
 executors=[
 DragonMPIExecutor(),
],
 strategy=None,
)

 parsl.load(config)

 bias = 10
 num_mpi_ranks = 10
 scale_factor = 1 / 10000
 connections = mpi_factorial_app(num_mpi_ranks, bias)
 send_scale_factor(connections.result()["in"], scale_factor)
 output_string = get_results(connections.result()["out"])
 print(
 f"mpi computation: {output_string}, exact = {(
 scale_factor * math.factorial(num_mpi_ranks-1) + bias)} ",
 flush=True,
)

• Manage MPI applications within an
allocation

• Proof of concept with plans to adapt to
official Parsl API

● 5

•Dragon Info:
• Github repo with latest build: https://github.com/DragonHPC
• Documentation: https://dragonhpc.github.io/dragon
• Email HPE dev team: dragonhpc@hpe.com

•Next Steps for Improving Dragon Integration with Parsl:
• Prioritize additional Parsl API integration targets for Dragon
• Explore opportunities for integrating Dragon based communication / sync objects
–connection, queue, barrier, dictionary objects

• Enable use of the Dragon Executor from outside an existing allocation
• Opportunities for using Dragon Telemetry for realtime Parsl workflow insights
• Opportunities for using Dragon Proxy for multi-site Parsl workflows

Dragon Info and Next Steps

https://github.com/DragonHPC
https://dragonhpc.github.io/dragon

© 2023 Hewlett Packard Enterprise Development LP

Pete Mendygral (pete.mendygral@hpe.com)

HPE Dragon Team: Michael Burke, Eric Cozzi, Julius Donnert, Veena Ghorakavi, Faisal
Hadi, Nick Hill, Maria Kalantzi, Kent Lee, Pete Mendygral, Davin Potts, Nick Radcliffe,
Rajesh Ratnakaram

Thank you

Please stop by the High Performance
Python for Science at Scale (HPPSS)

workshop at SC23!
https://hppss.github.io/SC23/

mailto:pete.mendygral@hpe.com

