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• Dragon
• Composable distributed run-time for managing dynamic processes, 

memory, and data at scale through high-performance communication 
objects

• Core interfaces for Python/C/C++/Fortran*

• Higher level interfaces for targeted use-cases
– Standard Python multiprocessing API

– Transparently scales efficiently across many nodes
– Validated against CPython unit tests

– Other interfaces in roadmap, like Parsl!

• Self-contained with minimal external dependencies

• Open source: https://github.com/DragonHPC/dragon
– Developed and maintained by HPE and community

• Dragon executor for Parsl
• Implemented with multiprocessing and Dragon-native APIs
• First target @python_app
• https://github.com/DragonHPC/dragon/blob/main/src/dragon/workflows/parsl_batch_executor.

py

What did we do?

• 2*Core interfaces not yet in all languages listed

https://github.com/DragonHPC/dragon
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• Cray EX with AMD processors
• Benchmark run inside existing allocation

Parsl+Dragon Benchmarking

~3.2X 
improvement

~1.7X 
improvement

• Dragon data gathered with RDMA-enabled transport (HSTA)
• https://github.com/DragonHPC/dragon/blob/main/examples/multiprocessing/n

umpy-mpi4py-examples/parsl_batched_scipy_scale_work.py
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Parsl @mpi_app with Dragon 

> dragon parsl_mpi_app_demo.py
mpi computation: 0.000100 * 362880.000000 + 10.000000 = 46.288000, exact = 46.288000000000004

# input args to function is arbitrary. 
# Return tuple is most important
@mpi_app
def mpi_factorial_app(num_ranks: int, bias: float, 
                      policy: Policy = None):
    import os

    # executable located in run_dir that we want to launch
    exe = "factorial"
    run_dir = os.getcwd()
    # list of the mpi args we want to pass to the app
    mpi_args = [str(bias)]
    # format that is expected by the DragonMPIExecutor
    return exe, run_dir, policy, num_ranks, mpi_args

def main():
    mp.set_start_method("dragon")

    config = Config(
        executors=[
            DragonMPIExecutor(),
        ],
        strategy=None,
    )

    parsl.load(config)

    bias = 10
    num_mpi_ranks = 10
    scale_factor = 1 / 10000
    connections = mpi_factorial_app(num_mpi_ranks, bias)
    send_scale_factor(connections.result()["in"], scale_factor)
    output_string = get_results(connections.result()["out"])
    print(
        f"mpi computation: {output_string}, exact = {(
            scale_factor * math.factorial(num_mpi_ranks-1) + bias)} ",
        flush=True,
    )

• Manage MPI applications within an 
allocation

• Proof of concept with plans to adapt to 
official Parsl API
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•Dragon Info:
• Github repo with latest build: https://github.com/DragonHPC
• Documentation: https://dragonhpc.github.io/dragon
• Email HPE dev team: dragonhpc@hpe.com

•Next Steps for Improving Dragon Integration with Parsl:
• Prioritize additional Parsl API integration targets for Dragon
• Explore opportunities for integrating Dragon based communication / sync objects
–connection, queue, barrier, dictionary objects

• Enable use of the Dragon Executor from outside an existing allocation
• Opportunities for using Dragon Telemetry for realtime Parsl workflow insights
• Opportunities for using Dragon Proxy for multi-site Parsl workflows

Dragon Info and Next Steps

https://github.com/DragonHPC
https://dragonhpc.github.io/dragon
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Thank you

Please stop by the High Performance 
Python for Science at Scale (HPPSS) 

workshop at SC23!
https://hppss.github.io/SC23/
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