

UniFaaS: Programming across Distributed Cyberinfrastructure with Federated Function Serving

Yifei Li*, Ryan Chard[‡], Yadu Babuji^{†‡}, Kyle Chard^{†‡}, Ian Foster^{†‡}, Zhuozhao Li*
* Dept. of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China [†] Dept. of Computer Science, University of Chicago, Chicago, IL, USA
[‡] Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA

Motivation

Executing scientific workflows across cyberinfrastructure(CI) amortizing queue times, distributed data, specialized accelerator etc.

When executing distributed scientific workflows

• funcX

Pros: Easy to build a distributed computing resource pool

Cons: Independent execution, manual data staging, limitations of input/output size

• Parsl

Pros: Support the DAG workflow, data staging (e.g. FTP, HTTP) Cons: Complicated to execute workflows on distributed CI simultaneously

□ What about funcX as an executor of Parsl?

- Things can be resolved immediately easy to program (in Parsl's way), distributed execution
- Things to be resolved data management, performance (scheduling)

Programming and Architecture

@function

from rdkit import *

open(out path, 'w').write(fp)

import GlobusFile

return out file

UniFaaS architecture

UniFaaS Scheduling

Goal: to minimize workflow's makespan

Challenges: varying data staging time, dynamic resource capacity.

Intuition:

- Data staging problem: start it as early as possible
- Dynamic resource capacity : real-time scheduling

UniFaaS Scheduling

Goal: to minimize workflow's makespan

Challenges: varying data staging time, dynamic resource capacity.

Intuition:

- Data staging problem:
- Dynamic resource capacity :

start it as early as possible

real-time scheduling

UniFaaS Scheduling

No prior knowledge

- Locality-aware scheduling for dynamic resource capacity schedule based on real-time status (real-time)
- Capacity-aware scheduling for static resource capacity schedule when the DAG enters our system (offline)

SUMMARY OF THE SCHEDULING ALGORITHMS.

	Capacity	Locality	DHA
Scheduling type	Offline	Real-time	Hybrid
Dynamic DAG supported	X	\checkmark	1
Dynamic resource supported	X	1	1
Knowledge required	×	X	\checkmark

Latency

OVERHEAD OF DIFFERENT ALGORITHMS.			
Scheduling algorithm	Overhead (s)		
Capacity	1.72×10^{-4}		
Locality	$3.00 imes 10^{-3}$		
DHA	3.46×10^{-3}		

One "hello world" task with a 1 MB input totally costs 1087 ms.

All algorithms have a modest overhead.

Scalability

Scalability of 5-second tasks is close to the ideal for up to 12 endpoints longer-duration tasks, better scaling

- 1. DHA has the best performance and highest worker utilization.
- 2. Improved performance by 22.99%, while utilizing only an additional 19.48% of resources.

Experiment	Makespan (s)	Transfer size (GB)
Capacity	3,240	4.86
Locality	3,882	53.46
DHA	2,898	44.94
Baseline: HPC-I only	3,763	0

Execute the drug screening workflow under static resource capacity.

Questions?

Yifei Li 12232396@mail.sustech.edu.cn

Case study: dynamic capacity

- 1. DHA has the best performance.
- 2. Locality is better than DHA without re-scheduling.

Execute the drug screening workflow under dynamic resource capacity.

