

APPFLX: PROVIDING PRIVACY-PRESERVING CROSS-SILO FEDERATED LEARNING AS A SERVICE

ZILINGHAN LI

Research Associate
Data Science and Learning Division, Argonne National Laboratory
Department of Computer Science, University of Illinois at Urbana-Champaign zilinghan.li@anl.gov, zl52@Illinois.edu

TEAM

Zilinghan Li, Shilan He, Pranshu Chaturvedi, Trung-Hieu Hoang, Minseok Ryu, E. A. Huerta, Volodymyr Kindratenko, Jordan Fuhrman, Maryellen Giger, Ryan Chard, Kibaek Kim, Ravi Madduri

MOTIVATION FOR FEDERATED LEARNING AS A SERVICE

Data Shift in Machine Learning

Privacy Concerns in Biomedical Data

APPFLX WORKFLOW

- Login via Globus using institutional credentials
- Create a federation (FL group)
- Invite collaborators using institutional credentials
- Collaborators setup the globus compute endpoint
- Collaborators provide endpoint id and load data loader
- Configure and launch different FL experiments
- Monitor training in real-time, and obtain comprehensive reports
- Reason using data distribution visualization

GO BEYOND AN FL FRAMEWORK: WHY "AS-A-SERVICE"?

Comparison between a PPFL framework and APPFLx

Framework

- Target users: Developers for developing and simulating FL algorithms.
- Authentication: No client auth for most frameworks.
- Launch Server: Requires expertise to start federated learning experiments.
- Results: Server needs to manually share the whole results, which may require further post-process.
- Connection: Developed algorithms via the framework can be easily adopted to the service.

Service (APPFLx)

- Target users: Domain experts for applying FL.
- Authentication: Clients use institutional credentials via Globus Auth to setup a trust relationship
- Launch Server: Admin uses web UI to easily launch the FL experiment with different hyperparameters.
- Results: Comprehensive logs, reports, and visualizations shared among all clients on web UI.
- Connection: The service is built on the top of the APPFL framework
- Misc: Integrated with HuggingFace, GitHub for pretrained models and pre-processing.

APPFLX CAPABILITIES Creating Secure Federations

Dashboard Federations ♣ Create Secure Federation **Federation Name** Screen Service Serv ANL_NCSA_LLNL Shilan Test1 B2AI/PALISADE-X/MGH B2AI/PALISADE-X/MGH_FLAAS_AWS Sroup Manage Create New Experiment APPFLX-Demo Sites Site Name ANL_NCSA_LLNL Configure Group Information Shilan Test1 Proup Information Configure

https://appflx.link/

Federation Configuration

Client Endpoints Jan F Nygård Severin Langberg Zilinghan Li Zilinghan Li - NCSA Ravi Madduri Marcus Klarqvist Jordan Fuhrman		Status O O O O O O O O O O O O O	Email V V V V V		
Federation Algorithm	Federated Average				
Experiment Name (1) Server Training Epochs (1) Client Training Epochs (3)	federation name server training epochs client training epochs				
Server Validation Set for Benchmarking None MNIST					
Privacy Budget (ɛ) (i) Clip Value (i) Clip Norm (i)	0 for disabled or number 0 for disabled or number 0 for disabled or number				

B2AI/PALISADE-X/MGH

Group Information Configure

APPFLX CAPABILITIES

Comprehensive Experiment Reports

Federation Report

Print as PDF

Group Name: APPFLX-Demo
Experiment Name: MNIST-FedAvgM-5Clients

Training Hyperparameters

	hyperparameter	explanation	value
	Federation Algorithm	Server algorithm for the federated learning	Federated Average Momentum
	Global training epochs	Number of global training epochs for the federation server	10
	Local training epochs	Number of local training epochs for each federation site/endpoint	2
	Privacy budget	Privacy budget used for privacy preserving	False
	Clip value	Clip value for privacy preserving (TBF)	False
	Clip norm	Clip norm for privacy preserving (TBF)	0.0
>	Model type	Type of trained model	CNN
	Server momentum	Momentum of the federation server	0.9
	Optimizer	SGD: Stochastic Gradient Descent Adam: Adaptive moment estimation	SGD
	Learning rate	Client learning rate	0.01
	Learning rate decay	Client learning rate decay	0.975
	Client weights	How to assign weights for different clients in client model aggregation	sample_size

Sites Validation

Click here to expand explanations:

MNIST-FedAvg-5Clients

RESOURCES

- Privacy Preserving Federated Learning as a Service APPFLx https://appflx.link/ and instructions https://appflx.link/ and instructions https://appflx.link/ and instructions https://appflx.link/ and https://appflx.link/ and https://appflx.link/ and https://appflaas.readthedocs.io/en/latest/
- GitHub for the APPFL framework: https://github.com/APPFL/APPFL/
- Globus Compute Communicator:
 https://github.com/APPFL/APPFL/tree/main/src/appfl/comm/globus_compute
- APPFLx paper: https://arxiv.org/pdf/2308.08786.pdf
- FedCompass preprint: https://arxiv.org/pdf/2309.14675.pdf

FUNDING ACKNOWLEDGEMENTS

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, UNDER CONTRACT NUMBER DE-AC02-06CH11357.

