APPFLX: PROVIDING PRIVACY-PRESERVING CROSS-SILO FEDERATED LEARNING AS A SERVICE

ZILINGHAN LI
Research Associate
Data Science and Learning Division, Argonne National Laboratory
Department of Computer Science, University of Illinois at Urbana-Champaign
zilinghan.li@anl.gov, zl52@illinois.edu
TEAM

MOTIVATION FOR FEDERATED LEARNING AS A SERVICE

Data Shift in Machine Learning

Privacy Concerns in Biomedical Data
However......
Setups for federated learning can be tedious for domain experts!
APPFLX WORKFLOW

- Login via Globus using institutional credentials
- Create a federation (FL group)
- Invite collaborators using institutional credentials
- Collaborators setup the globus compute endpoint
- Collaborators provide endpoint id and load data loader
- Configure and launch different FL experiments
- Monitor training in real-time, and obtain comprehensive reports
- Reason using data distribution visualization

Running On:

- **AWS ECS**
- **Fargate**

FL Algos:

- **APPFL**

FL Client #0

- Functions
- Results
- Configs

FL Client #1

- Functions
- Results

FL Server Container

AWS S3

AWS DynamoDB

AWS CloudWatch

Globus Group Authorization Service for Secure Federated Learning

Federated Learning Experiment Launch

- Client Configuration Pages (Group Members)
- Server Configuration Page (Group Admin)

Globus Compute Endpoint

APPFLX WorkFlow

- Login via Globus using institutional credentials
- Create a federation (FL group)
- Invite collaborators using institutional credentials
- Collaborators setup the globus compute endpoint
- Collaborators provide endpoint id and load data loader
- Configure and launch different FL experiments
- Monitor training in real-time, and obtain comprehensive reports
- Reason using data distribution visualization
GO BEYOND AN FL FRAMEWORK: WHY “AS-A-SERVICE”?

Comparison between a PPFL framework and APPFLx

<table>
<thead>
<tr>
<th></th>
<th>Framework</th>
<th>Service (APPFLx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target users:</td>
<td>Developers for developing and simulating FL algorithms.</td>
<td>Target users: Domain experts for applying FL.</td>
</tr>
<tr>
<td>Authentication:</td>
<td>No client auth for most frameworks.</td>
<td>Authentication: Clients use institutional credentials via Globus Auth to setup a trust relationship</td>
</tr>
<tr>
<td>Launch Server:</td>
<td>Requires expertise to start federated learning experiments.</td>
<td>Launch Server: Admin uses web UI to easily launch the FL experiment with different hyperparameters.</td>
</tr>
<tr>
<td>Results:</td>
<td>Server needs to manually share the whole results, which may require further post-process.</td>
<td>Results: Comprehensive logs, reports, and visualizations shared among all clients on web UI.</td>
</tr>
<tr>
<td>Connection:</td>
<td>Developed algorithms via the framework can be easily adopted to the service.</td>
<td>Connection: The service is built on the top of the APPFL framework</td>
</tr>
<tr>
<td>Misc:</td>
<td></td>
<td>Misc: Integrated with HuggingFace, GitHub for pre-trained models and pre-processing.</td>
</tr>
</tbody>
</table>
APPFLX CAPABILITIES
Creating Secure Federations

Dashboard

Federations

Federation Name

- ANL_NCSA_LLNL
- Shilan Test1
- B2AI/PALISADE-X/MGH
- B2AI/PALISADE-X/MGH_FLAAS_AWS
- APPFLX-Demo

Sites

Site Name

- ANL_NCSA_LLNL
- Shilan Test1
- B2AI/PALISADE-X/MGH

Federation Configuration

Client Endpoints

- Jan F Nygård
- Severin Langberg
- Zilinghan Li
- Zilinghan Li - NCSA
- Ravi Madduri
- Marcus Klarqvist
- Jordan Fuhrman

Federation Algorithm

- Federated Average

Experiment Name

- federation name

Server Training Epochs

- server training epochs

Client Training Epochs

- client training epochs

Server Validation Set for Benchmarking

- None
- MNIST

Privacy Budget (ε)

- 0 for disabled or number

Clip Value

- 0 for disabled or number

Clip Norm

- 0 for disabled or number

https://appflx.link/
APPFLX CAPABILITIES

Comprehensive Experiment Reports

Federation Report

Group Name: APPFLX-Demo
Experiment Name: MNIST-FedAvg-M-5Clients

Training Hyperparameters

<table>
<thead>
<tr>
<th>hyperparameter</th>
<th>explanation</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federation Algorithm</td>
<td>Server algorithm for the federated learning</td>
<td>Federated Average Momentum</td>
</tr>
<tr>
<td>Global training epochs</td>
<td>Number of global training epochs for the federation server</td>
<td>10</td>
</tr>
<tr>
<td>Local training epochs</td>
<td>Number of local training epochs for each federation site/endpoint</td>
<td>2</td>
</tr>
<tr>
<td>Privacy budget</td>
<td>Privacy budget used for privacy preserving</td>
<td>False</td>
</tr>
<tr>
<td>Clip value</td>
<td>Clip value for privacy preserving (TFB)</td>
<td>False</td>
</tr>
<tr>
<td>Clip norm</td>
<td>Clip norm for privacy preserving (TFB)</td>
<td>0.0</td>
</tr>
<tr>
<td>Model type</td>
<td>Type of trained model</td>
<td>CNN</td>
</tr>
<tr>
<td>Server momentum</td>
<td>Momentum of the federation server</td>
<td>0.9</td>
</tr>
<tr>
<td>Optimizer</td>
<td>SGD: Stochastic Gradient Descent</td>
<td>SGD</td>
</tr>
<tr>
<td>Learning rate</td>
<td>Client learning rate</td>
<td>0.01</td>
</tr>
<tr>
<td>Learning rate decay</td>
<td>Client learning rate decay</td>
<td>0.975</td>
</tr>
<tr>
<td>Client weights</td>
<td>How to assign weights for different clients in client model aggregation</td>
<td>sample_size</td>
</tr>
</tbody>
</table>

Sites Validation

- Click here to expand explanations:

MNIST-FedAvg-M-5Clients

Accuracy vs. Step

Loss vs. Step
RESOURCES

- GitHub for the APPFL framework: https://github.com/APPFL/APPFL/
FUNDING ACKNOWLEDGEMENTS

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, UNDER CONTRACT NUMBER DE-AC02-06CH11357.
THANK YOU!

Q&A