
funcXExecutor
Run Parsl Tasks on Globus Compute Endpoints

Name: Ved Kommalapati



funcXExecutor
• Goal: Create funcXExecutor

○ Allows users to execute Parsl apps on funcX endpoint

○ Provides Infrastructure for Parsl apps on separate endpoints

■ Enables mobile high performance parallel computing

• Methodologies:

○ Development:

■ Currently creating funcX Executor within Parsl

■ Connecting to singular endpoint

■ pytest suite => ensure behavior is consistent

○ Research:

■ Consulted with Ben Clifford



Intended Benefits
● Enhanced Scalability

● Performance

● Fault Tolerance / Load Balancing

● Cost Efficiency

○ Provides Large Compute Resource w/o Single HPC

● Mobile High Performance Parallelized Computing



Current Working Implementation
• Allows users to execute Parsl apps on a singular funcX endpoint

○ Behavior Mostly Consistent w/ Local Thread Execution

○ Observed Unexpected Behavior (TypeError):

■ test_fail.py

● test_no_deps

■ test_file_apps.py

● test_files

● test_increment

• funcX Config File and Executor Implementation

• Not end goal

○ Parallelization Amongst Multiple Endpoints / Systems



Current Working Implementation Results
Drawbacks:

● Singular Endpoint Execution

○ Does Not Leverage Multi-endpoint Parallelization

● Limited Parallelization 

○ # of Workers Initialized w/ Endpoint

Benefits / Takeaways:

● FuncX Endpoints Can Execute Parsl Apps

● Intersection Between FuncXVisualize and ParslVisualize

○ Research => Understanding Relationships

● Development Experience

○ Exposure to Globus Compute, Parsl, and General Dev. Practices



Multiple Endpoint Implementation
Requirements and Design:

● Pending Tasks (No Endpoint Available)

○ Organized Based on Dependencies (Topological)

○ Data Flow Kernel and Executor Implementations

● Receiving and Interpreting Results

○ Response_Queue, Update Endpoint Pool, Log File

● Endpoint Scheduling System

○ Endpoint Pool

■ Separate Sets of Available and All Endpoints

■ Available => Assigning Tasks

■ All => Endpoint Status Queries



Multiple Endpoint Implementation
Requirements and Design Continued:

● Modular Parallelization

○ Pre-determined threads_per_endpoint

■ Pre-initialized cores per thread

○ Task Categorization (e.g. Core Requirement)

○ Submit to Thread Closest to Core Requirement

● Race Condition Handling

○ Locks / Mutexes When Updating Lists / Queues

○ Leverage multiprocessing.Queue (Thread Safe)

● Most Importantly: User Interaction

○ Params Include User Provided List of Registered Endpoints

○ Discussion Point: Pair Task w/ Core Requirement



Past Roadblocks
● Version Control

○ Uniform Python Version, Conda Environment

● Pytest / Program Execution 

○ Importance of Vanilla Terminal

■ VSCode Terminal

● AMPQS Connection Rejection

● SSL Certificate Verification Issues

● Leverage Existing Globus Compute Tools

○ Server Self-Diagnostic

○ Monitoring Endpoint Status / Updating Globus

● FuncX Endpoint Information

○ Workers, Cores, Status



Upcoming / Future Objectives
● Flush Out Executor Pool

○ Ensure Optimal Thread Usage Behavior

■ Optional Parameter: Task Core Requirement

● Execution Result Queue / List

○ Context Regarding Execution Status

○ Log File Generation

○ Temporary Return Values => User

■ Associating Return Values w/ Appropriate Futures

■ Optional Parameter: Boolean (Aggregated Value Handling)

■ Temporary Result (Execution Failures)



● Sophomore at the University of Illinois Urbana-Champaign

● Email:

○ Personal Email: kommalapativ97@gmail.com

○ University Email: vkomm4@illinois.edu

● Slack:

○ Parsl Channel

○ FuncX Channel

● FuncXVisualize (Prev Project)

■ Visualizations or FuncX Data Required for Analysis

■ Log File Adjustments

■ Parsl FuncX Intersection

Ved Kommalapati

mailto:kommalapativ97@gmail.com
mailto:vkomm4@illinois.edu


Thank You!
• Dr. Daniel S. Katz

• Mr. Ben Clifford

• Globally Distributed funcX and Parsl Teams

○ University of Illinois

○ University of Chicago

○ Argonne National Laboratory

• NCSA (SPIN)


