Multi-User Endpoints

Kevin Hunter Kesling – kevin@globus.org

October 20, 2023
What is a Multi-User Compute Endpoint?

- Aside … hereafter:
 - MEP → Multi-User Endpoint
 - UEP → User Endpoint (“normal endpoint”)
- In contrast to a “normal” compute endpoint, an MEP does not run tasks.
- Instead, an MEP
 - starts UEPs
 - (Slightly more precisely, fork, drop privileges, exec)
 - Manages their lifecycle (okay, `os.fork()` and `os.waitpid()`)
- Receives start UEP commands from the web-service
htop screen recording

<table>
<thead>
<tr>
<th>PID</th>
<th>USER</th>
<th>RES</th>
<th>S</th>
<th>CPU%</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1923814</td>
<td>root</td>
<td>126M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924147</td>
<td>kevin</td>
<td>142M</td>
<td>S</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>1924217</td>
<td>kevin</td>
<td>124M</td>
<td>S</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>1924233</td>
<td>kevin</td>
<td>123M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924243</td>
<td>kyle</td>
<td>142M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924266</td>
<td>kyle</td>
<td>124M</td>
<td>S</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1924282</td>
<td>kyle</td>
<td>123M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924303</td>
<td>harper</td>
<td>142M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924368</td>
<td>harper</td>
<td>125M</td>
<td>S</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>1924384</td>
<td>harper</td>
<td>123M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924399</td>
<td>jessica</td>
<td>142M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924419</td>
<td>jessica</td>
<td>124M</td>
<td>S</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1924435</td>
<td>jessica</td>
<td>123M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924445</td>
<td>rowan</td>
<td>142M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1924472</td>
<td>rowan</td>
<td>124M</td>
<td>S</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>1924488</td>
<td>rowan</td>
<td>123M</td>
<td>S</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Admin Writes/Controls

do it? User Script

```python
import globus_compute_sdk as GC

uep_conf = {
    "ACCOUNT_ID": "314159265",
    "walltime": "00:02:00"
}

with GC.Executor(
    endpoint_id=mep_id,
    user_endpoint_config=uep_conf
) as gce:
    fut = gce.submit(some_func)
    res = fut.result()
```

engine:
- type: GlobusComputeEngine

provider:
- type: SlurmProvider
- partition: cpu
- account: {{ ACCOUNT_ID }}

launcher:
- type: SrunLauncher

walltime:
- {{ walltime|default("00:30:00") }}

user_config_template.yaml
Admin Writes/Controls

```yaml
engine:
  type: GlobusComputeEngine

provider:
  type: SlurmProvider
  partition: cpu
  account: {{ ACCOUNT_ID }}

launcher:
  type: SrunLauncher

walltime: {{ walltime|default("00:30:00") }}
```

User Script

```python
import globus_compute_sdk as GC

uep_conf = {
    "ACCOUNT_ID": "543126688"
}

with GC.Executor(
    endpoint_id=mep_id,
    user_endpoint_config=uep_conf
) as gce:
    fut = gce.submit(some_func)
    res = fut.result()
```
Two different configurations; same user!
Value-Add for Users

- No need to maintain multiple endpoints for different configurations
- Specify needs at task submission
- No need to log in to the terminal
Value-Add for Site Administrators

- **Templatable User Endpoint Configurations (Jinja)**
 - e.g., pre-choose SlurmProvider, PBSProvider; enforce limits

- **No orphaned user compute endpoints**
 - Enforced process tree
 - Idle-endpoints are shutdown (per template configuration)

- **Standard Globus Identity Mapping**

- **Lower barrier for users**
Current status

- We’re buttoning up a few details
- Have not yet written any documentation
- Looking for brave volunteers to give it go
Thank You!

- Questions?
- Comments?
- Synergistic thoughts?