
Supercharging Scientific Serverless:
Slashing Cold Starts with Python 
UniKernels

By Jamie K



Cold Starts



Container Cold Starts in HPC: Baseline

● Container systems are 

necessary for dependency 

management 

● Containers have poor cold 

start times in HPC.

Chard et al. 20191



We see many diverse dependencies

● FuncX users create apps 

that depend on many 

different libraries

● Some of those libraries 

require many files

2



Shared File system Performance

● Shared File systems read 

large files quickly.

● Performance degrades 

quickly as file count 

increases

● Metadata store becomes 

bottleneck with many 

small files

3



Import tensorflow in HPC

● Can take up to 10 minutes 

to import tensorflow 

● Consequence of reading 

many small files on HPC 

system

● Containers depend on 

underlying file system, thus 

would have the same 

problem

Kamatar et al. 20234



What are Unikernels?
How do they Help?



What’s a Unikernel
● Unikernel is an operating 

system built for a singular 
application

● Traditional Systems can 
support many libraries and 
interact with many devices

● Unikernels support devices 
and libraries necessary for a 
singular application

● Red line indicates 
userspace-kernelspace 
barrier

● We use Unikraft to build 
unikernels

Unikernel StackTraditional Stack

Kernel

Hardware

Operating 
System
Kernel

Hardware

App App App

Lib Lib

Application

Library OS

Host OS + VMM

Kernel

5



How do they help?

● Unikernels are lightweight and 

thus boot faster than other 

containers and VMMs

● Figure shows comparison of 

UniKernel on Qemu-KVM, 

Alpine on Docker, and Alpine on 

Firecracker
○ Alpine = Lightweight Linux

○ Firecracker = Micro VMM 

6



Unikernel on Shared FS

● Since a Unikernel image 
contains all dependencies 
using applications with many 
dependencies(e.g. tensorflow) 
does not tax the metadata 
store

● Working towards performing 
this experiment* 

● Current Unikernel image size 
~ megabytes

Unikernel Stack

Kernel

Application

Library OS

7



The Big Picture: Future Work

8

● We envision users treating unikernels like docker containers. This entails:
○ A build system wherein users specify python dependencies

○ Build VMM? qemu-kvm and firecracker work now, but do we need better?

● Immediate Future Work
○ Make unikernel that can import python libraries

○ Measure unikernel cold start time on shared file system

● Medium Term Future Work
○ Unikraft is modular, allowing system calls to be rewritten, we need to investigate how this can help

○ Do we need to modify the VMM to enable snapshotting?



Shout-out to the Homies(Acknowledgements)

● Kyle Chard => Helping with the story

● Valerie Hayot-Sasson => Getting in the mud with me(making stuff work)

● Kyle Hale => Helping me with kernel stuff

● Alexandru Orhean => Setting up a cluster

● Ryan Chard => dataset on common python libraries

9



References

● Kuenzer, S., Bădoiu, V.A., Lefeuvre, H., Santhanam, S., Jung, A., Gain, G., Soldani, C., Lupu, C., Teodorescu, ., Raducanu, C., & others 
(2021). Unikraft: fast, specialized unikernels the easy way. In Proceedings of the Sixteenth European Conference on Computer Systems 
(pp. 376–394).

● Kamatar, A., Sakarvadia, M., Hayot-Sasson, V., Chard, K., & Foster, I. (2023). Lazy Python Dependency Management in Large-scale 
Systems. To Appear in Proceedings of the International Conference on eScience. Slide 4

● Shaffer, Tim, and Douglas Thain. Taming metadata storms in parallel filesystems with metaFS. Proceedings of the 2nd Joint International 
Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems. 2017.

● Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik, B., Foster, I., & Chard, K. (2020). Funcx: A federated function serving fabric 
for science. In Proceedings of the 29th International symposium on high-performance parallel and distributed computing (pp. 65–76). 
Slide 1

● Babuji, Y., Woodard, A., Li, Z., Katz, D., Clifford, B., Kumar, R., Lacinski, L., Chard, R., Wozniak, J., Foster, I., & others (2019). Parsl: 
Pervasive parallel programming in python. In Proceedings of the 28th International Symposium on High-Performance Parallel and 
Distributed Computing (pp. 25–36).

● Wanninger, N., Bowden, J., Shetty, K., Garg, A., & Hale, K. (2022). Isolating functions at the hardware limit with virtines. In Proceedings 
of the Seventeenth European Conference on Computer Systems (pp. 644–662).

● Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Piwonka, P., & Popa, D.M. (2020). Firecracker: Lightweight 
virtualization for serverless applications. In 17th USENIX symposium on networked systems design and implementation (NSDI 20) (pp. 
419–434).

● Oakes, E., Yang, L., Zhou, D., Houck, K., Harter, T., Arpaci-Dusseau, A., & Arpaci-Dusseau, R. (2018). SOCK: Rapid task provisioning with 
Serverless-Optimized containers. In 2018 USENIX annual technical conference (USENIX ATC 18) (pp. 57–70).

● Cadden, J., Unger, T., Awad, Y., Dong, H., Krieger, O., & Appavoo, J. (2020). SEUSS: skip redundant paths to make serverless fast. In 
Proceedings of the Fifteenth European Conference on Computer Systems (pp. 1–15).

10


