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Cold Starts



Container Cold Starts in HPC: Baseline

● Container systems are 

necessary for dependency 

management 

● Containers have poor cold 

start times in HPC.
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We see many diverse dependencies

● FuncX users create apps 

that depend on many 

different libraries

● Some of those libraries 

require many files
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Shared File system Performance

● Shared File systems read 

large files quickly.

● Performance degrades 

quickly as file count 

increases

● Metadata store becomes 

bottleneck with many 

small files
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Import tensorflow in HPC

● Can take up to 10 minutes 

to import tensorflow 

● Consequence of reading 

many small files on HPC 

system

● Containers depend on 

underlying file system, thus 

would have the same 

problem

Kamatar et al. 20234



What are Unikernels?
How do they Help?



What’s a Unikernel
● Unikernel is an operating 

system built for a singular 
application

● Traditional Systems can 
support many libraries and 
interact with many devices

● Unikernels support devices 
and libraries necessary for a 
singular application

● Red line indicates 
userspace-kernelspace 
barrier

● We use Unikraft to build 
unikernels
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How do they help?

● Unikernels are lightweight and 

thus boot faster than other 

containers and VMMs

● Figure shows comparison of 

UniKernel on Qemu-KVM, 

Alpine on Docker, and Alpine on 

Firecracker
○ Alpine = Lightweight Linux

○ Firecracker = Micro VMM 
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Unikernel on Shared FS

● Since a Unikernel image 
contains all dependencies 
using applications with many 
dependencies(e.g. tensorflow) 
does not tax the metadata 
store

● Working towards performing 
this experiment* 

● Current Unikernel image size 
~ megabytes
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The Big Picture: Future Work
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● We envision users treating unikernels like docker containers. This entails:
○ A build system wherein users specify python dependencies

○ Build VMM? qemu-kvm and firecracker work now, but do we need better?

● Immediate Future Work
○ Make unikernel that can import python libraries

○ Measure unikernel cold start time on shared file system

● Medium Term Future Work
○ Unikraft is modular, allowing system calls to be rewritten, we need to investigate how this can help

○ Do we need to modify the VMM to enable snapshotting?
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