
The architecture for running Parsl
multi-site workflows on the Parallel

Works platform
Stefan Gary, Alvaro Vidal Torreira, Matthew Shaxted,

Michael McQuade, Quan Nguyen, Louis Le, Matt
Long, Michael Wilde

ParslFest
October 19, 2023 sfgary@parallelworks.com

Motivation
What is a multi-site workflow?

Applies to:

different partitions on the same cluster or

different clusters at different sites/clouds

Why is a multi-site workflow useful?

Collaboration/portability with other teams

Changes cloud hardware or performance:cost

Modern HPC is not monolithic - some jobs run best on different resources, e.g.

Single site Parsl

Multi-site Parsl

Head node

PARSL Worker node

Workflowspace

PARSL

python_app(my_func, executors=[label])(...)

data-compute proximity licensed software CPU/GPU

Context

What does
Parallel Works do?

● Configure, start
cloud clusters

● Same feel on
major CSPs

● IDE
(i.e. cloud workspace

● GUI or CLI launch Parsl workflows
● Collaborates for demonstration stages of SBIR grants

○ Funding for R&D for new technology (e.g. complex data, workflows)
○ Partner with academic teams so their application(s) can be

real-world, funder-relevant testbeds.

IDE (cloud terminal,
workspace)

Graphics
from

cluster

Configure, start
cloud clusters

Same feel on the
major CSPs

GUI, CLI, API launch Parsl
workflows

Collaborates for demonstration stages of R&D SBIR grants; partner with
academic teams for real-world, funder-relevant testbeds.

Typical multi-site workflow stumbling blocks

● I’m guessing that most users run Parsl scripts on the head node of an
on-premise cluster; as such, for most users, the resource is:

○ 1) persistent (user or sysadmin installs Parsl and it’s always accessible by all nodes) and
○ 2) on the same local network - ports on head node are accessible to worker nodes

● SSH tunnels and ports: clusters aren’t all on the same local network.
● Parsl needs to be installed everywhere with exactly the same versions -

need automation for installation or attaching persistent storage when using
ephemeral cloud resources.

● If using the FluxExecutor, Flux needs to be on the clusters; managing the
installation of Flux and Parsl via Spack can be challenging. (But recently, Flux
can be installed directly with Conda.)

CLUSTER NETWORK

COMPUTE NODESCOMPUTE NODES

Architecture for multi-site with HighThroughputExecutor

Credit:
Parsl docs

USER WORKSPACE

WORKER PORTS

HEAD NODE COMPUTE NODES

WORKER PORTSssh -L
WORKERS

PARSL EX INTCHG process_worker_poolSLURM

https://parsl.readthedocs.io/en/stable/stubs/parsl.executors.HighThroughputExecutor.html

How does it actually work?
1. PW connects to cluster head node with

ssh -R tunnel and modifies ~/.ssh/config
for easy connections back to PW (i.e.
forwarding head node SSH port to PW).

2. PW launches workflow with a bash
script in the user’s workspace on PW
platform.

3. The launch script clones and then starts
parsl_utils which:
a. Gathers resource information (i.e.

IP address of cluster) via PW API
b. Establishes SSH -L tunnels port

forwarding the Parsl worker ports
from the cluster to PW

c. Checks/installs Conda & Parsl
d. Builds the Parsl configuration

based on a, b, c & template
4. Parsl workflow is launched

Config(
 executors=[HighThroughputExecutor(
 address='*',
 label='host1',
 cores_per_worker=1.0,
 launch_cmd='process_worker_pool.py -a 10.128.0.17…’
 provider=SlurmProvider(
 channel=SSHChannel(
 '34.16.72.220',
 key_filename='/home/sfgary/.ssh/pw_id_rsa',
 port=22,
 script_dir='/home/sfgary/pw/jobs/…',
 username='sfgary'
),
 init_blocks=0,
 launcher=SingleNodeLauncher(debug=True, fail_on_any=False),
 max_blocks=1,
 nodes_per_block=1,
 parallelism=1,
 partition='compute',
 regex_job_id='Submitted batch job (?P<id>\\S*)',
 scheduler_options='\n#SBATCH --exclusive\n',
 walltime='01:00:00',
 worker_init="export PYTHONPATH=/home/sfgary/miniconda…"
),
 storage_access=[PWRSyncStaging(), PWGsutil(), PWS3()],
 worker_debug=True,
 worker_logdir_root='/home/sfgary/pw/jobs/…',
 worker_port_range=(50000, 55500),
 worker_ports=(53404, 54568),
 working_dir='/home/sfgary/pw/jobs/…'
), HighThroughputExecutor(...)]https://github.com/parallelworks/parsl_utils

HTEX limitations for MPI jobs (and workaround), future work
Parsl HTEX hardcodes SLURM --ntasks-per-node to 1; prevents running multiple
MPI tasks on the same node in parallel.

It is possible to bypass this issue by changing SLURM_TASKS_PER_NODE in the
bash_app itself and forcing a static number of Parsl blocks (i.e. init_blocks =
min_blocks = max_blocks = repeats or parallelism > 1). The FluxExecutor is an
alternative for launching MPI tasks in parallel.

Parsl multi-site future work
● Parsl ≥2023.7.24 - need HTEX address=”*” and specify

the local IP address of the head node when starting
process_worker_pool.py in HTEX launch_cmd.

● A custom data provider in parsl_utils wraps file, GCP,
and AWS bucket access. We plan to automate the
workflow integration of storage information in a similar
way as we do with compute resources.

Timeout/failover
future work: The
timeout starts counting
when the app starts
running, not when it is
submitted (and
queued).

Chris Harrop’s talk tomorrow

Thank you Ben and Yadu!

https://github.com/parallelworks/parsl_utils/tree/main/data_provider

