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Low GPU Utilization of Some Applicatic

* Parts of applications/workflows do not fully utilize
available GPU compute
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* Many constituent kernels of a workflow are small
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LLaMA runtime vs. GPU SM count

* We show different LLaMa versions do not improve
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* We also saw some image classification models
(convolutional DNNs) have few kernels that utilize
a lot of compute
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Multiplexing the GPUs

* A solution to low GPU utilization is to run multiple things in
GPU concurrently

 Providing entire GPU for a single function is not cost-effective
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* NVIDIA GPUs have Multi-process Service (MPS) and
Multi-Instance GPUs (MIGs) that lets user spatially share

GPUs An example of MPS dividing GPU

« MPS allows user to fix maximum number of streaming SMs
multiprocessors a process can use

—Users can Choose_ GPU percentage metric (e.g. 50% of V100 H100 A100
means process will get 40 SMs)

Available 7x 10GB 7x 10GB
« MIG creates pre-defined smaller instances of a GPU and MIG 4x 20GB 3x 20GB
provide isolation for multiple process to utilize GPU Instances 2x 40GB 2x 40GB

1x 80GB 1x 80GB

« Other GPU vendors also provide multiplexing solution
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GPU Multiplexing in Parsl (MPS)

* Parsl offers an easy way to insert the environmental variable required for multiplexing the
NVIDIA GPUs

* \We modified the HighThroughputExecutor to start the functions with desired GPU

percentag # Highthroughput executor with GPU percentage example
HighThroughputExecutor(

address="'localhost', GPU

label="gpu", / ID

available_accelerators=[1,2,4,0,0]{

gpu_percentage[50,25,30,40, 40] fagmml__ Corr689pondin

), GPU%

* The GPU percentage are enforced by populating the
[ CUDA MPS ACTIVE_THREAD_ PERCENTAGE environment variable for the target 4

function



GPU Multiplexing in Parsl (MIG)

* An application can be launched in a particular MIG but updating the
CUDA VISIBLE DEVICES=MIG-ID

« A code snip

ed for Hinh ThrniinhniitEveciitnre cehow how tn niit the NMIG 1D

),

address="'localhost',

label="gpu",
available_accelerators=[MIG-1-UUID,
MIG-2-UUID, MIG-3-UUID],

PR}



Performance LLaMA2 Setup

*1 NVIDIA A100 GPU with 80 GB memory
-CUDA 11.8

* Experiment: Text completion with LLaMA2 (7
billion parameter version)

» Total Task: 100 text completion

* When multiple LLaMAZ2 processes were running,
each process got fraction of 100 text completion
task

*60% lower task completion time

« Still 40% lower latency than default timesharing
method
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Next Steps

* While environment variable is a simple fix to assign GPU resources to a function, it is not
dynamic.
« Getting a dynamic input from scheduler specifying the GPU% to use

« Changing GPU percentage and MIG attributes is onerous. It requires restarting the
processes that are accessing the GPU

« DNN models with huge weights and parameters are a challenge when changing GPU%

* Implementation beyond single compute node

* Multiplexing where pipelining makes more sense than concurrent execution (e.qg.
Molecular dynamics workflow)

* Multiplexing strategy
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