—1

Hewlett Packard
Enterprise

Spatial Sharing of GPU with Parsl

Aditya Dhakal (aditya.dhakal@hpe.com)
Research Scientist, Hewlett Packard Labs

Collaborators:

Philipp Raith!, Logan Ward?, Rolando P. Hong Enriquez’, Gourav Rattihalli', Kyle Chard?, lan Foster? and Dejan Milojicic'

1 Hewlett Packard Enterprise
2 Argonne National Laboratory
3 University of Chicago

mailto:aditya.dhakal@hpe.com

] —o— llama-2-7b
12 , llama-2-13b

Low GPU Utilization of Some Applicatic

* Parts of applications/workflows do not fully utilize
available GPU compute

Inference time (sec)

* Many constituent kernels of a workflow are small
and/or memory bound T8 5 25 3 so s 70 82 sz 12

Number of Streaming Multiprocessars per GPU

LLaMA runtime vs. GPU SM count

* We show different LLaMa versions do not improve

* DenseNet-161

inference time when the GPU o] v ‘ « ResNet-50

¢ ResNext-101

w
[o]
[@]

* We also saw some image classification models
(convolutional DNNs) have few kernels that utilize
a lot of compute

N
o
S
- §
4
[
¢

llion multiplication and additions

: \OM 60 80 100 120—T40 1é02
ImageNet MBYEIS €bnv. Kernels °
FILOPs

Multiplexing the GPUs

* A solution to low GPU utilization is to run multiple things in
GPU concurrently

 Providing entire GPU for a single function is not cost-effective

DenseNet (15%

(] RBYNext-50 (35%
[GEH)16 (50%

GPU)

* NVIDIA GPUs have Multi-process Service (MPS) and
Multi-Instance GPUs (MIGs) that lets user spatially share

GPUs An example of MPS dividing GPU

« MPS allows user to fix maximum number of streaming SMs
multiprocessors a process can use

—Users can Choose_ GPU percentage metric (e.g. 50% of V100 H100 A100
means process will get 40 SMs)

Available 7x 10GB 7x 10GB
« MIG creates pre-defined smaller instances of a GPU and MIG 4x 20GB 3x 20GB
provide isolation for multiple process to utilize GPU Instances 2x 40GB 2x 40GB

1x 80GB 1x 80GB

« Other GPU vendors also provide multiplexing solution

E— .3

GPU Multiplexing in Parsl (MPS)

* Parsl offers an easy way to insert the environmental variable required for multiplexing the
NVIDIA GPUs

* \We modified the HighThroughputExecutor to start the functions with desired GPU

percentag # Highthroughput executor with GPU percentage example
HighThroughputExecutor(

address="'localhost', GPU

label="gpu", / ID

available_accelerators=[1,2,4,0,0]{

gpu_percentage[50,25,30,40, 40] fagmml__ Corr689pondin

), GPU%

* The GPU percentage are enforced by populating the
[CUDA MPS ACTIVE_THREAD_ PERCENTAGE environment variable for the target 4

function

GPU Multiplexing in Parsl (MIG)

* An application can be launched in a particular MIG but updating the
CUDA VISIBLE DEVICES=MIG-ID

« A code snip

ed for Hinh ThrniinhniitEveciitnre cehow how tn niit the NMIG 1D

),

address="'localhost',

label="gpu",
available_accelerators=[MIG-1-UUID,
MIG-2-UUID, MIG-3-UUID],

PR}

Performance LLaMA2 Setup

*1 NVIDIA A100 GPU with 80 GB memory
-CUDA 11.8

* Experiment: Text completion with LLaMA2 (7
billion parameter version)

» Total Task: 100 text completion

* When multiple LLaMAZ2 processes were running,
each process got fraction of 100 text completion
task

*60% lower task completion time

« Still 40% lower latency than default timesharing
method

E—

Task completion time (sec)

250 A

200 A

150 A

100 A

50 1

275 278 275

1 Process

144 145

2 Processes

H Timesharing (Default)
HE Equal Partition with MIG
H Equal Partition with MPS

3 Processes

4 Processes

Inference latency (sec)
n

@ Timesharing (Default)
¥ Equal partition with MIG

17 W Equal partition with MPS

-

o0

T
1 Process

T
2 Processes

T
3 Processes

T
4 Processes

Next Steps

* While environment variable is a simple fix to assign GPU resources to a function, it is not
dynamic.
« Getting a dynamic input from scheduler specifying the GPU% to use

« Changing GPU percentage and MIG attributes is onerous. It requires restarting the
processes that are accessing the GPU

« DNN models with huge weights and parameters are a challenge when changing GPU%

* Implementation beyond single compute node

* Multiplexing where pipelining makes more sense than concurrent execution (e.qg.
Molecular dynamics workflow)

* Multiplexing strategy

E— o7

Thank you

aditya.dhakal@hpe.com

: © 2023 Hewlett Packard Enterprise Development LP

