
Aditya Dhakal (aditya.dhakal@hpe.com)
Research Scientist, Hewlett Packard Labs

Spatial Sharing of GPU with Parsl

Collaborators:

Philipp Raith1, Logan Ward2, Rolando P. Hong Enriquez1, Gourav Rattihalli1, Kyle Chard3, Ian Foster2 and Dejan Milojicic1

1 Hewlett Packard Enterprise
2 Argonne National Laboratory
3 University of Chicago

mailto:aditya.dhakal@hpe.com

• Parts of applications/workflows do not fully utilize
available GPU compute

• Many constituent kernels of a workflow are small
and/or memory bound

• We show different LLaMa versions do not improve
inference time when the GPU

• We also saw some image classification models
(convolutional DNNs) have few kernels that utilize
a lot of compute

Low GPU Utilization of Some Applications

LLaMA runtime vs. GPU SM count

ImageNet Models Conv. Kernels
FLOPs

• 2

• A solution to low GPU utilization is to run multiple things in
GPU concurrently
• Providing entire GPU for a single function is not cost-effective

• NVIDIA GPUs have Multi-process Service (MPS) and
Multi-Instance GPUs (MIGs) that lets user spatially share
GPUs
• MPS allows user to fix maximum number of streaming

multiprocessors a process can use
–Users can choose GPU percentage metric (e.g. 50% of V100

means process will get 40 SMs)

• MIG creates pre-defined smaller instances of a GPU and
provide isolation for multiple process to utilize GPU

• Other GPU vendors also provide multiplexing solution

Multiplexing the GPUs

DenseNet (15%
GPU)ResNext-50 (35%
GPU)VGG-16 (50%
GPU)

An example of MPS dividing GPU
SMs

H100 A100
Available
MIG
Instances

7x 10GB
4x 20GB
2x 40GB
1x 80GB

7x 10GB
3x 20GB
2x 40GB
1x 80GB

• 3

• Parsl offers an easy way to insert the environmental variable required for multiplexing the
NVIDIA GPUs

• We modified the HighThroughputExecutor to start the functions with desired GPU
percentage

• The GPU percentage are enforced by populating the
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE environment variable for the target
function

GPU Multiplexing in Parsl (MPS)

GPU
ID

Correspondin
g

GPU%

• 4

• An application can be launched in a particular MIG but updating the
CUDA_VISIBLE_DEVICES=MIG-ID

• A code snipped for HighThroughputExecutors show how to put the MIG ID

GPU Multiplexing in Parsl (MIG)

• 5

• 1 NVIDIA A100 GPU with 80 GB memory
• CUDA 11.8
• Experiment: Text completion with LLaMA2 (7
billion parameter version)

• Total Task: 100 text completion
• When multiple LLaMA2 processes were running,
each process got fraction of 100 text completion
task

• 60% lower task completion time
• Still 40% lower latency than default timesharing
method

Performance LLaMA2 Setup

• 6

• While environment variable is a simple fix to assign GPU resources to a function, it is not
dynamic.
• Getting a dynamic input from scheduler specifying the GPU% to use

• Changing GPU percentage and MIG attributes is onerous. It requires restarting the
processes that are accessing the GPU
• DNN models with huge weights and parameters are a challenge when changing GPU%

• Implementation beyond single compute node

• Multiplexing where pipelining makes more sense than concurrent execution (e.g.
Molecular dynamics workflow)

• Multiplexing strategy

Next Steps

• 7

© 2023 Hewlett Packard Enterprise Development LP

aditya.dhakal@hpe.com

Thank you

