Automating FaaS-based Federated Learning

Matt Baughman
ParslFest
October 20, 2023
A few main ideas...
The Application: ML/FL

The Challenges: Workload Balancing, Tuning Hyperparameters, Robustness
What is Federated Learning?

- Problems with traditional ML
 - Data locality
 - Resource distribution
 - Privacy concerns
- Distributed data sources
 - Training at those sources
 - No raw data is communicated or shared
- Configurable aggregation
- Assists in security
- Use of distributed resources
Why serverless is the answer...

❖ Portability and interoperability
 ➢ Functions when and where they are needed

❖ Modularity
 ➢ Register functions and replace function IDs as needed

❖ Fire-and-forget
 ➢ We do not need constant contact between resources
 ➢ Excellent for weak networks

❖ Needs to be easier than home-spun solution
 ➢ Very simple FL is trivially easy
 ■ np.mean(list_of_weights)
 ➢ Widespread adoption requires undercutting ease at every stage

❖ We have put together FLoX—Federated Learning on funcX
Workload balancing

- Serverless enables computing on many different devices
 - Many different devices are imbalance
- Remove compute bottlenecks by altering endpoint workloads
- Demonstrated effective FL while varying both samples and epochs
Autotuning: an ongoing effort

❖ Users shouldn’t have to configure experiments either!
❖ Understanding workload balance and aggregation
 ➢ Frequency of aggregation
 ■ Every epoch to once per experiment
 ➢ Comparing workload balance methods
 ■ Balancing on epochs, samples, or both
 ■ Epochs seems like the parameter to sacrifice
 ● Much more testing needed
❖ Currently testing on sensitivity to dropped endpoints

Figure 2: Comparison of balancing techniques to perform FL between two high powered endpoints and two additional endpoints with one-eighth the capabilities.
Autotuning: a practical use-case

- FL data is more prone to being sparse/ non-IID
 - More difficult to learn
- FL models are likely to be smaller and less able to learn complex features
- Result: extreme forgetting when learning sparse features across multiple endpoints
 - Anything learned is “averaged” away
- How to address this...
 - Must be automatic
 - See “ease of use” challenge
 - Algorithms
 - Tournament based pretraining
 - Advanced aggregation

![Graph showing accuracy over epochs with different numbers of endpoints](image-url)
Let’s generalize…

❖ DELTA+
 ➢ Automate placement of funcX/GC tasks across available endpoints
 ➢ Work began ~2020
 ➢ Minor improvements since
 ■ Cloud provisioning
 ■ ML-based placement
 ■ Probabilistic scheduling
 ■ Complex cost usage

❖ Potential applications in FL?
The Big Idea – Automate Distributed ML/FL

- Data all over the place
 - More data all the time
- Many endpoints
- Hybrid structure
 - Distributed ML on HPC
 - Ad-hoc clustering for hierarchical aggregation
 - Global workload coordination/consolidation
- “Compute where the data lives”
- Perhaps more cost effective to move the data?
 - “Train or transfer?”
 - Train and transfer!
Future Work

❖ Hybrid/hierarchical FL
 ➢ FL principles as a distributed ML paradigm
 ➢ Distributed ML on a resource, FL on multiple resources

❖ Decentralized FL
 ➢ Endpoints initiate training rounds – event-driven FL?

❖ DELTA-Learn
 ➢ Big resource management issues
 ■ Profiling endpoints/workloads - embeddings for resource characteristics?
 ■ Placing tasks - graph ML?
 ➢ Consolidated multi-modal ML – using different data from different endpoints?
 ■ Extraction questions, data management, knowledge discovery, etc
 ➢ FL for FL – self-adaptive ML/FL system (learn by doing)
Questions?

mbbaughman@uchicago.edu