Automating FaaS-based Federated Learning

Matt Baughman

ParslFest
October 20, 2023

University of Chicago Department of Computer Science

A few main ideas...

University of Chicago Department of Computer Science

The Application: ML/FL

The Challenges: Workload
Balancing, Tuning
Hyperparameters, Robustness

University of Chicago Department of Computer Science

What is Federated Learning?

% Problems with traditional ML
> Data locality
> Resource distribution
> Privacy concerns

.

« Distributed data sources
> Training at those sources Aw! Aw?

> No raw data is communicated

00000 (XX1X] 0000 0009

or shared
% Configurable aggregation =Sl =
% Assistsin security l @ Ee—

o

* Use of distributed resources

University of Chicago Department of Computer Science

Why serverless is the answer...

7

% Portability and interoperability

> Functions when and where they are needed
% Modularity

> Register functions and replace function IDs as needed
% Fire-and-forget
> We do not need constant contact between resources
> Excellent for weak networks

% Needs to be easier than home-spun solution

> Verysimple FL is trivially easy
m np.mean(list_of_weights)
> Widespread adoption requires undercutting ease at every stage
% We have put together FLoX-Federated Learning on funcX

*final logo design pending

University of Chicago Department of Computer Science

Workload balancing

% Serverless enables computing on many different devices
> Many different devices are imbalance
% Remove compute bottlenecks by altering endpoint workloads
% Demonstrated effective FL while varying both samples and epochs

0.9 1 ST e e 0.9

0.8 0.8
> > —
§ 0.7 Aggregated = -—-- pi4_1 § 0.7 1 [;“ Aggregated =~ -—-- pi4_1
8 - jetson --e- pi4_2 3 A ---- jetson = - pi4_2
<Lt) 0.6 pi3_1 pc_1 <'~(J 061 ! pi3_1 pc_1

pi3 2 pc_2 I pi3_2 pc_2
0.51 : ——=- pi3_3 pc_3 0.59 | ——- pi3_3 pc_3
1 =sime pi3_4 e pi3_4
0.4 y T y T y " 0.4 T T T y T y T
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40

Time (minutes) Time (minutes)

(a) Balancing samples (b) Balancing epochs

University of Chicago Department of Computer Science

o
%

o
S

Autotuning: an ongoing effort

o
w

/) —— One-eighth Epochs
~——— One-fourth Epochs + Half Samples
—— Half Epochs + One-fourth Samples
—— One-eighth Samples

o
N

% Users shouldn't have to configure experiments either!
% Understanding workload balance and aggregation

Validation Accuracy (%)

°
-

25 5.0 7.5 10.0 125 150 175 20.0

> Frequency of aggregation Rolinds-oF Training
: Figure 2: Comparison of balancing techniques to perform
u Eve I’y epOCh to once per experl ment FL between two high powered endpoints and two additional
. dpoi ith one-eighth th bilities.
> Comparing workload balance methods encpoints with one-cighth the capabiities

m Balancing on epochs, samples, or both
m Epochs seems like the parameter to sacrifice
® Much more testing needed
% Currently testing on sensitivity to dropped endpoints

0.8

°
~

Epochs per round
~-- 64

e © o o
w » 0 o

Validation Accuracy (%)
=]

o
e

6 5’0 160 150 200 250
Total Epochs

University of Chicago Department of Computer Science

Autotuning: a practical use-case

% FL datais more prone to being sparse/ non-1ID
> More difficult to learn
% FL models are likely to be smaller and less able
to learn complex features
% Result: extreme forgetting when learning
sparse features across multiple endpoints
> Anything learned is “averaged” away
% How to address this...
> Must be automatic
m See “ease of use” challenge
> Algorithms
m Tournament based pretraining
m Advanced aggregation

University of Chicago Department of Computer Science

0.8 1

0.7 1

Accuracy
© o o o o
N w By w [«)]

o
—

4
<)
L

—+— Centralized
g 2 endpoints
—— 32 endpoints
—&— 187 endpoints
—+— 512 endpoints

2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
Epochs

def control_stuff(time_sensitive_data):
return(doing_stuff)

def definitely r
return(defin

el —— e Pl CraIoN 6
def pass_masters(questionable_stuff):
return(pass if random((0,100))>50 else do_industry())

/ .
Let's generallZe... eswawreg . | 5L,

return(stuff_ done)

deffarallel stuff(l):

def solve_collatz(start_value): return([1]*np.inf)
if start_value>0 and start_value <= np.inf:

return(1l)
else:

’:' D E LTA+ return(l) def igigﬁiﬁ;zz;math)]

> Automate placement of funcX/GC

(“modern” distributed system)

tasks across available endpoints

> Work began ~2020
> Minor improvements since \
m Cloud provisioning Predicting
AN
m ML-based placement Profiling ey
Ernest
m Probabilistic scheduling Paragon
m Complex cost usage AWS Resource DELTA+
Optimizer ParaOpt
N : N . P
% Potential applications in FL? Cherrypick

Provisioning

University of Chicago Department of Computer Science

7
0’0

Data all over the place
> More data all the time
Many endpoints

7
0‘0

7
0‘0

Hybrid structure
> Distributed ML on HPC
> Ad-hoc clustering for

hierarchical aggregation
> Global workload
coordination/consolidation

7
0‘0

“Compute where the data lives”

7
0‘0

Perhaps more cost effective to
move the data?
> “Train or transfer?”

m Train and transfer!

University of Chicago Department of Computer Science

Future Work

% Hybrid/hierarchical FL
> FL principles as a distributed ML paradigm
> Distributed ML on a resource, FL on multiple resources
% Decentralized FL
> Endpoints initiate training rounds — event-driven FL?
DELTA-Learn
> Bigresource management issues
m Profiling endpoints/workloads - embeddings for resource characteristics?
m Placing tasks - graph ML?
> Consolidated multi-modal ML — using different data from different endpoints?
m Extraction questions, data management, knowledge discovery, etc
> FL for FL — self-adaptive ML/FL system (learn by doing)

7
0’0

University of Chicago Department of Computer Science

Questions?

mbaughman@uchicago.edu

University of Chicago Department of Computer Science

