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A few main ideas...
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The Application: ML/FL

The Challenges: Workload
Balancing, Tuning
Hyperparameters, Robustness
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What is Federated Learning?

% Problems with traditional ML
> Data locality
> Resource distribution
> Privacy concerns

.

«  Distributed data sources
> Training at those sources Aw! Aw?

>  No raw data is communicated
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or shared
%  Configurable aggregation =Sl =
% Assistsin security l @ Ee—
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*  Use of distributed resources
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Why serverless is the answer...
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% Portability and interoperability

> Functions when and where they are needed
% Modularity

> Register functions and replace function IDs as needed
% Fire-and-forget
> We do not need constant contact between resources
> Excellent for weak networks

% Needs to be easier than home-spun solution

> Verysimple FL is trivially easy
m  np.mean(list_of_weights)
> Widespread adoption requires undercutting ease at every stage
% We have put together FLoX-Federated Learning on funcX

*final logo design pending
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Workload balancing

% Serverless enables computing on many different devices
> Many different devices are imbalance
% Remove compute bottlenecks by altering endpoint workloads
%  Demonstrated effective FL while varying both samples and epochs
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(a) Balancing samples (b) Balancing epochs
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Autotuning: an ongoing effort
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/) —— One-eighth Epochs
~——— One-fourth Epochs + Half Samples
—— Half Epochs + One-fourth Samples
—— One-eighth Samples
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% Users shouldn't have to configure experiments either!
% Understanding workload balance and aggregation
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>  Comparing workload balance methods encpoints with one-cighth the capabiities

m Balancing on epochs, samples, or both
m  Epochs seems like the parameter to sacrifice
®  Much more testing needed
% Currently testing on sensitivity to dropped endpoints
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Autotuning: a practical use-case

% FL datais more prone to being sparse/ non-1ID
> More difficult to learn
% FL models are likely to be smaller and less able
to learn complex features
% Result: extreme forgetting when learning
sparse features across multiple endpoints
> Anything learned is “averaged” away
% How to address this...
> Must be automatic
m See “ease of use” challenge
> Algorithms
m Tournament based pretraining
m Advanced aggregation
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def control_stuff(time_sensitive_data):
return(doing_stuff)

def definitely r
return(defin

el —— e Pl CraIoN 6
def pass_masters(questionable_stuff):
return(pass if random((0,100))>50 else do_industry())

/ .
Let's generallZe...  eswawreg . | 5L,

return(stuff_ done)

deffarallel stuff(l):

def solve_collatz(start_value): return([1]*np.inf)
if start_value>0 and start_value <= np.inf:

return(1l)
else:

’:' D E LTA+ return(l) def igigﬁiﬁ;zz;math) ]

> Automate placement of funcX/GC

(“modern” distributed system)

tasks across available endpoints

> Work began ~2020
> Minor improvements since \
m Cloud provisioning Predicting
AN
m  ML-based placement Profiling ey
Ernest
m  Probabilistic scheduling Paragon
m  Complex cost usage AWS Resource  DELTA+
Optimizer ParaOpt
N : N . P
% Potential applications in FL? Cherrypick

Provisioning
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Data all over the place
> More data all the time
Many endpoints
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Hybrid structure
> Distributed ML on HPC
> Ad-hoc clustering for

hierarchical aggregation
>  Global workload
coordination/consolidation
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“Compute where the data lives”
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Perhaps more cost effective to
move the data?
> “Train or transfer?”

m Train and transfer!
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Future Work

% Hybrid/hierarchical FL
> FL principles as a distributed ML paradigm
> Distributed ML on a resource, FL on multiple resources
%  Decentralized FL
> Endpoints initiate training rounds — event-driven FL?
DELTA-Learn
> Bigresource management issues
m Profiling endpoints/workloads - embeddings for resource characteristics?
m Placing tasks - graph ML?
> Consolidated multi-modal ML — using different data from different endpoints?
m  Extraction questions, data management, knowledge discovery, etc
> FL for FL — self-adaptive ML/FL system (learn by doing)
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Questions?

mbaughman@uchicago.edu
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