

MPI Support in Parsl

and Globus Compute*

Yadu Babuji

* in due course, at the appropriate juncture, in the fullness of time

MPI, why is it so hard!

Proposed approach - Application side

Proposed approach - Runtime configuration

↔ con	fig.py	Raw
1	<pre>nodes_per_task = 2</pre>	
2	<pre>tasks_per_block = 16</pre>	
3	config = Config(
4	executors=[
5	HighThroughputExecutor(
6	label='mpiapps',	
7	<pre>enable_mpi_mode=True,</pre>	
8	<pre>address=address_by_hostname(),</pre>	
9	<pre>start_method="fork", # Needed to avoid interactions between MPI and os.fork</pre>	
10	<pre>max_workers=tasks_per_block,</pre>	
11	<pre>cores_per_worker=1e-6, # Prevents limiting workers to cores on one node</pre>	
12	provider=PBSProProvider(
13		
14	<pre>launcher=SimpleLauncher(), # Launches only a single executor per block</pre>	
15	<pre>select_options="ngpus=4",</pre>	
16	nodes_per_block=nodes_per_task * tasks_per_block,	
17),	
18),	
19	1	
20)	

What we are missing

- Fault handling: Reclaiming nodes when a launcher/MPI fails
 - Often a failure of a node triggers a shutdown of the entire batch job
 - Launcher failures often hang (eg, theta with aprun)
- Resource specification covers the most minimal set of descriptors
 - GPU/Accelerator binding like with srun --gpu-bind=<map_gpu/mask_gpu/...>
 - Specify memory per rank/cpu like: srun --mem=<size>
- Configuration cleanliness around specifying the right launcher from (aprun/srun/mpirun/mpiexec...) for the specific target config.
- Potentially a new mpi_app ?

Please help!

- Read the <u>MPI Functions doc</u> for background, add comments
- Try the experimental feature branch with your MPI application
- Tell us what worked vs what didn't
- If you have ideas:
 - Add an issue OR
 - Push code over a PR :)