PRACTICAL FAIR PRINCIPLES FOR AI MODELS

ELIU HUERTA
Lead for Translational AI
Data Science and Learning Division, Argonne National Laboratory
Department of Computer Science, The University of Chicago

Parsl & funcX Fest 2022
14 September 2022
TEAM

Nikil Ravi
Pranshu Chaturvedi
Eliu Huerta
Zhengchun Liu
Ryan Chard

Ari Scoutas
KJ Schmidt
Kyle Chard
Ben Blaiszik
Ian Foster
WHAT
Define what FAIR means for AI models
WHAT

Define what FAIR means for AI models

See Ari’s presentation
WHAT

Define what FAIR means for AI models

FAIR and AI-ready datasets

Suitable format (HDF5/ROOT/etc.) to leverage modern computing environments

Include Jupyter notebooks to visualize datasets, and explore data type, shape and size

Ready to integrate with APIs for AI research and to enable accelerated training and AI-inference

Goal: automate data management to support and enable discovery and innovation
Define what FAIR means for AI models

FAIR and AI-ready datasets

Suitable format (HDF5/ROOT/etc.) to leverage modern computing environments

Include Jupyter notebooks to visualize datasets, and explore data type, shape and size

Ready to integrate with APIs for AI research and to enable accelerated training and AI-inference

Goal: automate data management to support and enable discovery and innovation
WHAT

Define what FAIR means for AI models – setting expectations

Linked to FAIR and AI-ready datasets used for model development and testing

Linked to open source repositories that provide scientific software to recreate AI models

Include Jupyter notebooks that explicitly show how to use them, and describe input data type and shape, and output data type and shape

Containerized and ready to use in modern computing environments

Include clear and well known uncertainty quantification metrics

Goal: enable reproducible, accelerated and trustworthy, autonomous discovery
WHAT

Define what FAIR means for AI models – setting expectations

Key goals:

Enable, accelerate and sustain innovation and scientific discovery

North star: autonomous discovery

Data, computing and AI fabric: integrate, consolidate and disrupt

Exemplar: high energy diffraction microscopy
HOW

FAIR and AI-ready Datasets

Design, Train, Validate & Test AI models with FAIR and AI-ready experimental data from Argonne’s Advanced Photon Source

Big Data Bags, Minimal Viable Identifiers Materials Data Facility

DLHub

PyTorch Model Baseline Model

NVIDIA TensorRT Model Accelerated Inference

SambaNova Model Accelerated Training

AI models trained, validated, tested and containerized leveraging ThetaGPU and SambaNova Reconfigurable Dataflow Unit™ at Argonne Leadership Computing Facility

Containerized AI models published in the Data and Learning Hub for Science (DLHub)

Published AI models include DOI, tutorial to invoke them, sample test set with uncertainty quantification metrics, and rich and descriptive metadata for reproducibility purposes

Connect published AI models in DLHub with Materials Data Facility and ThetaGPU and quantify reusability, interoperability and reproducibility using funcX as a universal distributed computing service
BraggNN: Training Dataset
Ravi, Nikhil; Liu, Zhengchun; Sharma, Hemant; Chaturvedi, Pranshu; Huerta, E.A.; Scourtas, Aristana; K3, Schmidt; Chard, Ryan; Blaiszik, Ben

Organizations
MDF Open

DOI
10.18126/iftp-twz1 View on Datacite

Year
2022

Source Name
ravi_braggnn_training

Tags
machine learning microstructures experiment
BraggNN: Training Dataset
Ravi, Nikil; Liu, Zhengchun; Sharma, Hemant; Chaturvedi, Pranshu; Huerta, E.A.; Scourtas, Aristana; K3, Schmidt; Chard, Ryan; Blaiszik, Ben

SambaNova BraggNN
[kj.schmidt913@gmail.com/BraggNN_SN3](Copy)

Zhengchun Liu, Nikil Ravi; Pranshu Chaturvedi; E.A. Huerta; Aristana Scourtas; K.J. Schmidt; Ryan Chard; Ben Blaiszik

Run with DLHub SDK
from dlhub_sdk.client import DLHubClient
X = get_my_data() # replace this
dl = DLHubClient()
dl.run('kj.schmidt913@gmail.com/BraggNN_SN3', X)

Get More Info with DLHub SDK
from dlhub_sdk.client import DLHubClient
dl = DLHubClient()
dl.describe_servable('kj.schmidt913@gmail.com/BraggNN_SN3')

DLHub SDK Installation
pip install dlhub_sdk

DLHub SDK documentation
BraggNN: Training Dataset
Ravi, Nikil; Liu, Zhengchun; Sharma, Hemant; Chaturvedi, Pranshu; Huerta, E.A.; Scourtas, Aristana; K3, Schmidt; Chard, Ryan; Blaizzik, Ben

SambaNova BraggNN
kj.schmidt913@gmail/BraggNN_SN3

Zhengchun Liu; Nikil Ravi; Pranshu Chaturvedi; E.A. Huerta; Aristana Scourtas; KJ Schmidt; Ryan Chard; Ben Blaizzik

Python static method

Input
Image map
Type: ndarray
Shape: ['11', '11']

Output
list of Bragg peak positions
Type: ndarray
Shape: ['1', '2']

Run with DLHub SDK
from dlhub_sdk.client import DLHubClient
X = get_my_data() # replace this
dl = DLHubClient()
dl.run('kj.schmidt913@gmail/BraggNN_SN3', X)

Get More Info with DLHub SDK
from dlhub_sdk.client import DLHubClient
dl = DLHubClient()
dl.describe_servable('kj.schmidt913@gmail/BraggNN_SN3')

DLHub SDK Installation
pip install dlhub_sdk

DLHub SDK documentation
BraggNN: Training Dataset
Ravi, Nikil; Liu, Zhengchun; Sharma, Hemant; Chaturvedi, Pranshu; Huerta, E.A.; Scourtas, Aristana; K3, Schmidt; Chard, Ryan; Blaiszik, Ben

SambaNova BraggNN
kj.schmidt913@gmail.com/BraggNN_SN3

Run with DLHub SDK
from dlhub_sdk.client import DLHubClient
X = get_my_data() #replace this
dl = DLHubClient()
dl.run('kj.schmidt913@gmail.com/BraggNN_SN3', X)

Get More Info with DLHub SDK
from dlhub_sdk.client import DLHubClient
dl = DLHubClient()
dl.describe_servable('kj.schmidt913@gmail.com/BraggNN_SN3')

DLHub SDK Installation
pip install dlhub_sdk

DLHub SDK documentation
BraggNN: Training Dataset
Ravi, Nikhil; Liu, Zhengchun; Sharma, Hemant; Chaturvedi, Pranshu; Huerta, E.A.; Scourtas, Aristana; K3, Schmidt; Chard, Ryan; Blaiszik, Ben

Organizations
MDF Open

DOI
10.18126/iftp-twz1 [View on Datcite](#)

Year
2022

Source Name
ravl_braggnn_training

Tags
- machine learning
- microstructures
- experiment

SambaNova BraggNN

kj.schmidt913@gmail/BraggNN_SN3 [Copy](#)

Python static method

Input
- Image map
 - Type: ndarray
 - Shape: ["11", "11"]

Output
- list of Bragg peak positions
 - Type: ndarray
 - Shape: ["1", "2"]

Run with DLHub SDK
```python
from dlhub_sdk.client import DLHubClient
X = get_my_data() #replace this
dl = DLHubClient()
dl.run('kj.schmidt913@gmail/BraggNN_SN3', X)
```

Get More Info with DLHub SDK
```python
from dlhub_sdk.client import DLHubClient
dl = DLHubClient()
dl.describe_servable('kj.schmidt913@gmail/BraggNN_SN3')
```

DLHub SDK Installation
```bash
pip install dlhub_sdk
```
[DLHub SDK documentation](#)
END-USER HAPPINESS

Bragg peak analysis ran natively in ThetaGPU

Bragg peak analysis ran by combining MDF, DLHub, ThetaGPU, funcX, and Globus
END-USER HAPPINESS

End user experience similar to running AI models directly from personal laptop

Identify high performing AI models

Accelerate state-of-the-art to state-of-practice cycle

Seamless combination of scientific data infrastructure and leadership class supercomputing
VISION

Unveil basic connections between data and models

Scientific visualization & accelerated computing

FAIR Data

Data facilities & Large scale scientific facilities

FAIR AI models

Disruptive AI approaches coupled with smart cyberinfrastructure enable and accelerate scientific discovery

Autonomous AI-driven discovery

Scientific data infrastructure & Leadership class computing facilities

AI learns to describe natural phenomena bridging the gap between approximate models & simulations and experimental data

Workflows connect disparate data and computing resources to enable autonomous scientific discovery
ACKNOWLEDGEMENTS

This work was supported by the FAIR Data program and the Braid project of the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under contract number DE-AC02-06CH11357. It used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

This work was performed under financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design (CHiMaD), and by the National Science Foundation under award 1931306 "Collaborative Research: Framework: Machine Learning Materials Innovation Infrastructure."

Development of DLHub has been supported by LDRD funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This work was also supported by the National Science Foundation under NSF Award Number: 2209892 "Frameworks: Garden: A FAIR Framework for Publishing and Applying AI Models for Translational Research in Science, Engineering, Education, and Industry"

We also thank SambaNova Systems, Inc., for engineering support to make our BraggNN AI models work efficiently on their system at the ALCF AI-Testbed.

We thank NVIDIA for their continued support.