Using funcX to enable better federated learning over serverless

Matt Baughman

Parsl & funcX Fest
Sep. 13, 2022
Making things easy...

Computer science is difficult...

Machine learning

Federated
Making things easy...

But it doesn’t need to be...
What is Federated Learning?

❖ Distributed data sources
❖ Model training at those sources
❖ Some aggregation mechanism
❖ Assists in security
❖ Examples
 ➢ GBoard and Apple
 ➢ Siloed data
 ➢ Edge compute/network constrained
 ➢ Healthcare
❖ Challenges
 ➢ Network maintenance
 ➢ Manual configuration
 ➢ Hardware heterogeneity
 ➢ Solution completeness
Our solution: FLoX–Federated Learning on funcX

- funcX-ify relevant functions
 - I.e., those that could be relevant for deployment
- Launches relevant training and inference tasks across all endpoints
 - Manually configurable
 - Or pulled from .yaml
- Simply define a model, point to the data, and flox()
What sets FLoX apart?

❖ First and foremost
 ➢ Single line invocation
❖ Serverless
 ➢ All the reasons funcX is great
 ➢ Now for FL!
❖ End-to-end
 ➢ Caveats...
❖ Use existing funcX endpoints
❖ Any tensorflow defined model
 ➢ No model architecture constraints

```python
federated_learning(
    global_model=tf_model,
    endpoint_ids=[ep1, ep2, ep3],
    loops=10,
    epochs=10,
    data_source="keras",
    keras_dataset="mnist",
    num_samples=1000
)
```
Initial Experiments

❖ Performance
 ➢ Comparable final accuracies to non-serverless frameworks
 ➢ Faster convergence wrt time
 ➢ Global model outperforms all individual models
 ➢ Demonstrated effective even on small quantities of data

❖ System
 ➢ Extremely low overhead
 ➢ Demonstration of transfer costs
 ■ “Compute where the data is”

Sample FL accuracy over time

(c) Animals-10
Using FLoX

1. (flox) matt@matts-MacBook-Pro ~ % pip install pyflox
2. from flox.flox import federated_learning
3. federated_learning(
 tf_model,
 endpoint_list,
 loops=10,
 epochs=10,
 data_source,
 dataset
)

4. Wonder what to do with all the time you saved...
Future Work

❖ More functionality!
➢ Adding aggregation functions
➢ Automated accelerator support
➢ Better integration for finding/using diverse data

❖ Autotuning FL
➢ Balancing workloads for device capability
➢ Epochs vs loops vs data samples
 ■ Initial results
➢ Fault tolerance and dropping devices

❖ Cost-aware FL
➢ If data can be moved, should it?
➢ Integration with DELTA
 ■ Our automated function placement system for funcX

❖ FL for system performance
➢ Learn performance embeddings with FL across systems and functions

Figure 1: Comparison of different numbers of epochs per round for running FL on CIFAR-10.

Figure 2: Comparison of balancing techniques to perform FL between two high powered endpoints and two additional endpoints with one-eighth the capabilities.
Key Takeaways

❖ FLoX makes FL easy using funcX
 ➢ Serverless has many advantages
 ➢ funcX is the best of them
❖ No need to sacrifice performance for simplicity
❖ Makes FL accessible for FL or data experimentation
Acknowledgements
Relevant Publications

Questions?

Contact—mbaughman@uchicago.edu