#*parsl

Parsl: Pervasive Parallel Programming in Python

Kyle Chard (chard@uchicago.edu)
Yadu Babuji, Anna Woodard, Ben Clifford, Zhuozhao Li, Mike Wilde, Dan Katz, lan Foster

http://parsl-project.org

.4 THE UNIVERSITY OF

& CHICAGO Argonne &

» |ESAXM| UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

mailto:chard@uchicago.edu

Composition and parallelism

(Scientific) software is increasingly assembled rather than written
— High-level language to integrate and wrap components from many sources
Parallel and distributed computing is ubiquitous
— Increasing data sizes combined with plateauing sequential processing power
Python (and the SciPy ecosystem) is the de facto standard language (for science)
— Libraries, tools, Jupyter, etc.

Parsl allows for the natural expression of parallelism in Python:
— Programs can express opportunities for parallelism

— Realized, at execution time, using different execution models on different
parallel platforms

#parsl

Fourth Generation Parallel Dataflow Scripting

2001
2006

2009

2017

#parsl

Virtual Data Language original declarative effort

Swift/K http://swift-lang.org

Very fast, highly portable, pervasively parallel dataflow
Orchestrates apps passing files

Swift/T http://swift-lang.org/Swift-T

Ultra scalable, distributed interpretation, MPl-based
Adds in-memory functions and datasets

Parsl parallel programming library http://parsl-project.org
All of the above, in Python

Parsl: parallel programming in Python

Apps define opportunities for parallelism pip install parsl
* Python apps call Python functions
e Bash apps call external applications

@python app
def hello ():

Apps return “futures”: a proxy for a result return 'Hello World! A pg’[hon
that might not yet be available print (hello() . result())
Hello World!
Apps run concurrently respecting data @bash_app
. . def echo hello(stdout="echo-hello.stdout'):
dependencies. Natural parallel programming! return 'echo “Hello World!™’

echo hello().result() BASH

Parsl scripts are independent of where they with open('echo-hello.stdout’, 'r') as T:

) print(f.read())
run. Write once run anywhere!
Hello World!

foarsl Try Parsl: https://mybinder.org/v2/gh/Parsl/parsl|-tutorial/master

Data-driven example: parallel geospatial analysis

6 78 9101112 131415 1617 16192021 223 242526 T BA NN R BMB
H\ll\l\ [T TT]

0
1
2
3
4 2
5|] 1 .. I B]
8 | 1 ‘
7 7 SRR P
8 ’ .

]
0 [ol
11 i, - | |1
12 ; i
13
14
15 8 i - -
©]
) 17 N I [T 11
1 0':,’:‘;::::;;"‘
et =
il e —— s =i
2 VIR Bl [P
- SR T S > ;
g e R 2
&% ¥ R o
s ‘ y ¥
~iddd b 5
Ehbida Y, ’” . 5 E
\ M / \ - "o 1 11v0 o

Land-use Image processing pipeline for the MODIS remote sensor

#parsl 5

Expressing a many task workflow in Parsl

1) Wrap the science applications as Parsl Apps:

@bash app
def (outputs=[]) :
'./simulation app.exe {outputs[O0]}’

@bash app
def (lnputs=[], outputs=[]):
1 = 1nputs; o = outputs
'./merge {1} {0}'.format (' '.join(i), o[O07])

Gpython app
def (Lnputs=[]) :
analysis package (1nputs)

#parsl

Expressing a many task workflow in Parsl

2) Execute the parallel workflow by calling Apps:

sims = |[]

for 1 1n range (nsims):

sims.append(simulate (outputs=['sim-%s.txt' $ 1]))
all = merge (inputs=[1.outputs[0] for 1 1n sims],

outputs=['all.txt'])

result = analyze (1lnputs=[all.outputs[0]])

#parsl

Decomposing dynamic parallel execution into a task-

dependency graph

' Jupyter parsl-introduction (unsaved changes) A

File Edit View Insert Cell Kemel Widgets Help Not Trusted ‘ Python 3 O

+ 8 & B 4 % MHRun B C W Makdown 7 =

Monte Carlo workflow
Many scientific applications use the monte-carlo method to compute results.

If a circle with radius r is inscribed inside a square with side length 2r then the area of the circle is #r> and the area of the square is (2)’)2, Thus, if N
uniformly distributed random points are dropped within the sugare then approximately N z/4 will be inside the circle.

Each call to the function pi{) is executed independently and in parallel. The avg_three() app is used to compute the average of the futures that were
returned from the pi() calls.

The dependency chain looks like this:

App Calls pi() piQ) pi()

\ | /
Futures a b c
AU
App Call avg_points()
|
Future avg_pi

In []: | # App that estimates pi by placing points in a box
@python_app
def pi(total):
import random

Set the size of the box (edge length) in which we drop random points
edge_length = 10000

center = edge_length / 2

€2 = center ** 2

count = @

for i in range(total):
Drop a random point in the box.
%,y = random.randint(l, edge_length),random.randint(l, edge_length)
Count points within the circle
if (x-center)**2 + (y-center)**2 < c2:
count += 1

return (count*4/total)

App that computes the average of the values
@python_app
def avg points(a, b, c):

return (@ + b + c)/3

Estimate three values for pi
a, b, ¢ = pi(10**6), pi(16**6), pi(10**5)

Compute the average of the three estimates
avg_pi = avg_points(a, b, c)

Print the results
print(“A: {@:.5f} B: {1:.5f} C: {2:.5f}".format(a.result(), b.result(), c.result()))
print("Average: {@:.5f}".format(avg_pi.result()))

arsl

#parsl

ood
ga

S

amazon

web services

%
O
O
L

XSEDE

Extreme Science and Engineering
Discovery Environment

Parsl scripts are execution provider independent

B Configuration

The same script can be run locally, on grids, clouds, or How-to Configure

supercomputers Comet (SDSC)
Cori (NERSC)

. f . h d | d | d d Stampede2 (TACC)
GfOWIﬂg Support Oor various scneauiers andad ciouda venaors Theta (ALCF)
Cooley (ALCF)

Swan (Cray)

CC-IN2P3

Midway (RCC, UChicago)

—

_ g
isiramazon

uF webservices

Open Science Grid

Amazon Web Services

Ad-Hoc Clusters

X

Y Google Cloud |

#parsl

Further help

Separation of code and execution

[©] sample configs.py [] runner.py
... imports import parsl
import os
threads_config = Config(from sample_configs import threads_config, cori_config

executors=[ThreadPoolExecutor()]

) if os.environ.get('PIPELINE_ENV', 'test'):
parsl.load(threads_config)

cori_config = Config(else:

executors=[

parsl.load(gori_config)

HighThroughputExecutor (
label="Cori_HTEX_multinode',
provider=SlurmProvider(#... rest of the pip

'debug', # Partition / QOS

nodes_per_block=2, ch ti . t
walltine="00:20:00", 00Sse execution environmen

launcher=SrunLauncher () at runtime. Parsl will direct
)) tasks to the configured
1) execution environment(s).

#*parsl 10

Parallel applications require different execution models

High-throughput workloads
— Protein docking, image processing, materials reconstructions

— Requirements: 1000s of tasks, 100s of nodes, days of execution, reliability,
usability, monitoring, elasticity, etc.

Extreme-scale workloads
— Cosmology simulations, imaging the arctic, genomics analysis

— Requirements: millions of tasks, 1000s of nodes (100,000s cores), days of
execution, capacity

Interactive and real-time workloads
— Materials science, cosmic ray shower analysis, machine learning inference
— Requirements: 10s of nodes, seconds-minutes, rapid response, pipelining

#parsl

11

Pars|l implements an extensible executor interface

High-throughput executor (HTEX)
— Pilot job-based model with multi-threaded manager deployed on workers
— Designed for ease of use, fault-tolerance, etc.
— <2000 nodes (~60K workers), Ms tasks, task duration/nodes > 0.01

Extreme-scale executor (EXEX)*

— Distributed MPI job manages execution. Manager rank communicates
workload to other worker ranks directly

— Designed for extreme scale execution on supercomputers
— >1000 nodes (>30K workers), Ms tasks, >1m task duration

Low-latency Executor (LLEX)*
— Direct socket communication to workers, fixed resource pool, limited features
— 10s nodes, <1M tasks, <1m tasks

#parsl

12

Dissecting the High-throughput Executor

Pilot job-based execution
with a multi-threaded
manager deployed on each
worker

Interchange queues and
processes messages to/from
manager via two queues
(sockets)

#parsl

High Throughput Executor

¢

Interchange
Task Result

Queue Queue
Batching ‘ Watchdog

Load Balancing

‘Node1 || Noden|
Manager Manager
Worker Worker Worker Worker

13

Pars|l executors scale to 2M tasks/256K workers

__ 104
L Os tasks
Weak scaling: 10 tasks per worker £ 102
-+ HTEX
e HTEX and EXEX outperform other Python- 5 EXEX
e IPP
based approaches and scale beyond ~2M tasks 2 102 Dask
FireWorks
g ---- Ideal
@)
100 10! 102 103 104 105

2 - Number of workers

Framework Maximum Maximum Maximum) .
of workers'| # of nodes’| tasks/second” ~ 10 E
Parsl-IPP 2048 64 330 < J1stasks

Parsl-HTEX 65536 2048 1181 e 104
Parsl-EXEX 262 144 8192 1176 = e
FireWorks 1024 32 4 S
Dask distributed 4096 128 2617 D 10~
. ot -
E

O 104t BBl ol __

Babuiji et.al. "Parsl: Pervasive Parallel Programming in Python." 10° 10! 102 103 104 10°

ACM International Symposium on High-Performance Parallel and N
o : mber of worker
Distributed Computing (HPDC). 2019. u o ers

‘::-Parsl Workflows

Monitoring Workflows

a n d Name Version Owner Status Runtime (s) Tasks Actions
test_udp_simple.py 2019-02-20 22:16:43.570094 zhuozhao Completed 25.218577 @ |E| Lnt
° ° °
V] S u a l] Zat] O n test_fan_in_out.py 2019-02-20 22:20:24.918435 zhuozhao Completed 151.207859 @ [] Lo
test_monitoring.py 2019-02-20 22:23:16.632888 zhuozhao Completed 121.393285 |E| Lnt
test_fan_in_out.py 2019-02-20 22:27:05.407903 zhuozhao Completed 151.513495 @ |E| Lnt
test_fan_in_out.py inc (1)
Workflow Summary App Summary)
« Started: 2019-02-20 22:20:24.918435 Name Count + Workflow name: test_fan_in_out.py Task State
» Completed: 2019-02-20 22:22:56.126294 « Started: 2019-02-20 22:20:24.918435]
+ Completion time: 151.207859 s add_inc 2 « Completed: 2019-02-20 22:22:56.126294 Time State
* Owner: zhuozhao « Completion time: 151.207859 s
« host: midway2-login2.rcc.local inc 10 . :r_ Zhuozhao 2019-02-20 22:20:25.128896 launched
« rundir: /home/zhuozhao/parsl/parslitests/imanual_tests/runinfo/001 : -
 tasks_failed_count: 0 » task_func_name:inc 2019-02-20 22:20:25.236034 running
« tasks_completed_count: 12 e task_id: 1
) « task_time_submitted: 2019-02-20 22:20:25.112977 2019-02-20 22:21:15.349689 done
View workflow resource usage .
« task_time_returned: 2019-02-20 22:21:15.349654
« task_inpuis: None
« task outputs: None
S D) T DD « task_stdin: None
— guemﬂ » task_stdout: None
unning
11 |
10 I]
. | ‘ CPU utilization Memory Usage
8 |
7 I
a 100
¥ 6 I %5‘ 05
o \ 5 -
]
P i ‘ r_; o E 045
5 =
3 I | 2 g 04
Q
: I ‘ £ 035
1 0
0 I W kfI . 02-20 02-20 02-20 k L 02-20 02-20 02-20 02-20
s O r OW VI eW . 22:20:30 22:20:40 T‘mezzzu.su Ta S VI eW 22:20:30 22:2040 Timezz 2050 222100
Feb 20, 2019

Tme

#parsl 5

Other functionality provided by Parsl

Resource abstraction. Block-based
model overlaying different providers
and resources

X Fault tolerance. Support for retries,
~ checkpointing, and memoization

M Multi site. Combining

executors/providers for execution
across different resources

Elasticity. Automated resource
- expansion/retraction based on
workload

////"/,
r///“/’
////"./,

al/| Monitoring. Workflow and resource
monitoring and visualization

#parsl

Jupyter

Globus. Delegated authentication
and wide area data management

Data management. Automated
staging with HTTP, FTP, and Globus

Containers. Sandboxed execution
environments for workers and tasks

Jupyter integration. Seamless
description and management of
workflows

Reproducibility. Capture workflow
provenance in the task graph

16

Parsl is being used in a wide range of scientific applications

Machine learning to predict
stopping power in materials

&

Protein and biomolecule
structure and interaction

Weak lensing using sky
surveys

Cosmic ray showers as part of
QuarkNet

Information extraction to
classify image types in papers

Materials science at the
Advanced Photon Source

Machine learning and data
analytics (DLHub)

®© © © © 6 @€

Red indicates higher statistical
confidence in data

#parsl 17

Parsl is an open-source Python community

i Pars| / pEII'Sl @Ed byv) @ Unwatch~ 30 W Unstar | 194 Y Frork @ 47

<» Code Issues 250 Pull requests 28 Actions Projects 0 Wiki Security Insights Settings

Pars| - Parallel Scripting Library http://parsl-project.org Edit

Manage topics

‘D 3,328 commits ¥ 97 branches £ 0 packages € 23 releases - 1 environment 2% 35 contributors gl Apache-2.0

18

@ Parasllel Works PLATFORM SOLUTIONS PARTNERS COMPANY SIGN UP LOGIN

Supercharge your big compute problems
with high-performance computing in the
cloud.

Run compute-intensive simulation, modeling and data analytics workflows

faster, at greater scale, and more cost effectively than ever before.

Q

Specify Parameters

Parametric Variables

Specify inputs, parameters and variables

<

srf_Cp_btm

vol_U_z0.56
createKpiJson
srf_IsoCpT_btm

scale_U
srf_CpZ_iso_top_frt_rhs
srf_CpZ_iso_btm_frt_rhs
srf_geo_rr
srf_CpX_iso_top_rr_rhs
srf_U_iso_top_rr_ths
srf_CpX_rr
srf_CpZ_iso_top_rr_lhs
srf_IsoCpT_iso_btm_rr_lhs
srf_U_iso_top_rr_rhs
vol_Cp_x5.67

srf_U_rr

srf_geo_frt

srf_CpZ_iso_top_rr_rhs
vol_CpT_x4.37
srf_geo_iso_btm_frt_rhs
srf_CpX_lhs
srf_Cp_iso_btm_rr_lhs
srf_IsoCpT_iso_top_rr_lhs
srf_U_iso_btm_rr_rhs
srf_IsoCpT_iso_top_frt_Ihs
srf_geo_top
stf_CpX_iso_top_frt_rhs
vol_Cp_y0.00
vol_Cp_x0.47
srf_IsoCpT_lhs
vol_U_z0.10

vol_U_x0.47

ition Zoom to Selection Save Selection to File

Parallel Works hosts workflow for design exploration

Run Parallel Workflow

results

Track workflow progress and view intermediate

v Compute Resources

Thumbnail Size L M S
@ OAKLEY 0SC

HH WINDOWSFLOODPOOL

=% CRAY_SWAN

L4

S Ty

4T3 DEFAULTPOOL

3 KLIMAATPOOL

(i

Current: 00 units/hr

Max: 4.0 unitsihr

Current: 00 units/hr

Current: 5.01 units/hr

win: 5.

nitshr

Max: 8.0 units/hr

(1]

View Workflow Results

Rapidly analyze and visualize 1000x simulation
results

Drag Downforce Balance

Kriging Interpolation

Smoothed w/ High-Order Polynomial

@ Parallel WorK%

Parsl provides simple, safe, scalable, and flexible
parallelism in Python

Simple: Python with minimal new constructs (integrated with the growing
SciPy ecosystem and other scientific services)

Safe: deterministic parallel programs through immutable input/output
objects, dependency task graph, etc.

Scalable: efficient execution from laptops to the largest supercomputers

Flexible: programs composed from existing components and then applied
to different resources/workloads

#parsl 21

Questions?

http://parsl-project.org

https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master

BE:] THE UNIVERSITY OF
CHICAGO
___1]_:/, U.S. DEPARTMENT OF

.Y JENERGY

AAAAAAAAAAAAAAAAAA

