
Parsl: Pervasive Parallel Programming in Python

Kyle Chard (chard@uchicago.edu)
Yadu Babuji, Anna Woodard, Ben Clifford, Zhuozhao Li, Mike Wilde, Dan Katz, Ian Foster

http://parsl-project.org

mailto:chard@uchicago.edu

2

Composition and parallelism

(Scientific) software is increasingly assembled rather than written
– High-level language to integrate and wrap components from many sources

Parallel and distributed computing is ubiquitous

– Increasing data sizes combined with plateauing sequential processing power

Python (and the SciPy ecosystem) is the de facto standard language (for science)

– Libraries, tools, Jupyter, etc.

Parsl allows for the natural expression of parallelism in Python:

– Programs can express opportunities for parallelism

– Realized, at execution time, using different execution models on different
parallel platforms

3

Fourth Generation Parallel Dataflow Scripting

Virtual Data Language original declarative effort

Swift/K http://swift-lang.org

Very fast, highly portable, pervasively parallel dataflow
Orchestrates apps passing files

Swift/T http://swift-lang.org/Swift-T

Ultra scalable, distributed interpretation, MPI-based
Adds in-memory functions and datasets

Parsl parallel programming library http://parsl-project.org

All of the above, in Python

2001

2006

2009

2017

4

Parsl: parallel programming in Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result
that might not yet be available

Apps run concurrently respecting data
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

pip install parsl

Try Parsl: https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master

5

Data-driven example: parallel geospatial analysis

Land-use Image processing pipeline for the MODIS remote sensor

Analyze

Landuse

Colorize

Mark

Assemble

6

Expressing a many task workflow in Parsl

1) Wrap the science applications as Parsl Apps:
@bash_app

def simulate(outputs=[]):

return './simulation_app.exe {outputs[0]}’

@bash_app

def merge(inputs=[], outputs=[]):

i = inputs; o = outputs

return './merge {1} {0}'.format(' '.join(i), o[0])

@python_app

def analyze(inputs=[]):

return analysis_package(inputs)

7

Expressing a many task workflow in Parsl

2) Execute the parallel workflow by calling Apps:

sims = []

for i in range (nsims):

sims.append(simulate(outputs=['sim-%s.txt' % i]))

all = merge(inputs=[i.outputs[0] for i in sims],

outputs=['all.txt'])

result = analyze(inputs=[all.outputs[0]])

8

Decomposing dynamic parallel execution into a task-

dependency graph

Parsl

9

Parsl scripts are execution provider independent

The same script can be run locally, on grids, clouds, or
supercomputers

Growing support for various schedulers and cloud vendors

10

Separation of code and execution

Choose execution environment
at runtime. Parsl will direct
tasks to the configured
execution environment(s).

11

Parallel applications require different execution models

High-throughput workloads
– Protein docking, image processing, materials reconstructions

– Requirements: 1000s of tasks, 100s of nodes, days of execution, reliability,
usability, monitoring, elasticity, etc.

Extreme-scale workloads
– Cosmology simulations, imaging the arctic, genomics analysis

– Requirements: millions of tasks, 1000s of nodes (100,000s cores), days of
execution, capacity

Interactive and real-time workloads
– Materials science, cosmic ray shower analysis, machine learning inference

– Requirements: 10s of nodes, seconds-minutes, rapid response, pipelining

12

Parsl implements an extensible executor interface

High-throughput executor (HTEX)
– Pilot job-based model with multi-threaded manager deployed on workers

– Designed for ease of use, fault-tolerance, etc.

– <2000 nodes (~60K workers), Ms tasks, task duration/nodes > 0.01

Extreme-scale executor (EXEX)*
– Distributed MPI job manages execution. Manager rank communicates

workload to other worker ranks directly

– Designed for extreme scale execution on supercomputers

– >1000 nodes (>30K workers), Ms tasks, >1m task duration

Low-latency Executor (LLEX)*
– Direct socket communication to workers, fixed resource pool, limited features

– 10s nodes, <1M tasks, <1m tasks

13

Dissecting the High-throughput Executor

Pilot job-based execution
with a multi-threaded
manager deployed on each
worker

Interchange queues and
processes messages to/from
manager via two queues
(sockets)

14

Parsl executors scale to 2M tasks/256K workers

Weak scaling: 10 tasks per worker

● HTEX and EXEX outperform other Python-
based approaches and scale beyond ~2M tasks

0s tasks

1s tasks

Babuji et.al. "Parsl: Pervasive Parallel Programming in Python."

ACM International Symposium on High-Performance Parallel and

Distributed Computing (HPDC). 2019.

15

Monitoring

and

visualization

Workflow view Task view

16

Other functionality provided by Parsl

Globus. Delegated authentication

and wide area data management

Fault tolerance. Support for retries,

checkpointing, and memoization

Containers. Sandboxed execution

environments for workers and tasks

Data management. Automated

staging with HTTP, FTP, and Globus

Multi site. Combining

executors/providers for execution

across different resources

Elasticity. Automated resource

expansion/retraction based on

workload

Monitoring. Workflow and resource

monitoring and visualization
Reproducibility. Capture workflow

provenance in the task graph

Jupyter integration. Seamless

description and management of

workflows

Resource abstraction. Block-based

model overlaying different providers

and resources

17

Parsl is being used in a wide range of scientific applications

E

C

A B

D

G

• Machine learning to predict

stopping power in materials

• Protein and biomolecule

structure and interaction

• Weak lensing using sky

surveys

• Cosmic ray showers as part of

QuarkNet

• Information extraction to

classify image types in papers

• Materials science at the

Advanced Photon Source

• Machine learning and data

analytics (DLHub)

A

B

C

D

E

F

G

F

18

Parsl is an open-source Python community

19

20Parallel Works Inc. Copyright 2018. All Rights Reserved.

Parallel Works hosts workflow for design exploration

Run Parallel Workflow

Track workflow progress and view intermediate

results

Specify Parameters

Specify inputs, parameters and variables

View Workflow Results

Rapidly analyze and visualize 1000x simulation

results

21

Parsl provides simple, safe, scalable, and flexible

parallelism in Python

Simple: Python with minimal new constructs (integrated with the growing
SciPy ecosystem and other scientific services)

Safe: deterministic parallel programs through immutable input/output
objects, dependency task graph, etc.

Scalable: efficient execution from laptops to the largest supercomputers

Flexible: programs composed from existing components and then applied
to different resources/workloads

22

Questions?

U . S . D E P A R T M E N T O F

ENERGY

http://parsl-project.org

https://mybinder.org/v2/gh/Parsl/parsl-tutorial/master

