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LSST DESC DC2 Image Simulation Campaign

§ Vera Rubin Observatory LSST is an extreme scientific endeavor in astronomy
§ Large amount of data for the field
§ Significant need to minimize systematic error for science
§ Scientific pipelines need extensive testing

§ LSST Dark Energy Science Collaboration (DESC) running Data Challenges!
§ Allows us to build and test pipelines on realistic data
§ DC2 campaign is the most elaborate effort on this front

§ Simulated telescope images
§ 300 square degrees, 5 years deep
§ Multiple color bands

§ Two Component Simulation
§ Wide-Fast-Deep (WFD) survey for large area
§ Deep Drilling Field (DDF) survey for transient objects studies (small area)



DC2 Image 
Simulation

• DC2 consists of over 30,000 
telescope observations called “visits”
• Each visit consists of 189 sensors, 
depicted in gray
• Each sensor shares information 
about a shared sky for the visit, but 
must simulate entirely individual 
objects
• Some visits chosen to contain 
transient objects for science 
verification



imSim Workflow with Parsl

imSim

§ Inputs: 
§ Catalog of objects to draw for an observation 

+ information about the telescope
§ List of sensors to simulate
§ DDF uses input checkpoint files

§ Work:
§ Simulates intervening sky
§ Determines which objects influence a sensor
§ Simulates those objects on the camera

§ Outputs:
§ Raw telescope quality image

Parsl

§ Parsl driver running on compute 
resources on allocation

§ Runs pre-processing Python scripts to 
package imSim tasks into bundles

§ Runs executors on each compute note 
on allocated reosurce

§ Workers start "Docker" container

§ Workers run imSim tasks inside 
container



Workflow Diagram



Sensor Time Distribution

• Runtimes to Sensor Image for Y3 DDF
• Note — large time discrepancy

• Time discrepancy not just visit to visit
• Individual objects appearing on one sensor 

can have long run times
• Incredibly hard to predict

• Worse for WFD
• Runtimes on O(ten hours), with ~10% sensor 

to sensor changes



Production Highlights

~2000 nodes 
simultaneously utilized 
on Cori KNL resource at 

NERSC

~2800 nodes 
simultaneously utilized 
on Theta KNL resource 

at ALCF

Workflow flexibly 
transferred between 
these two resources

~4000 nodes utilized 
on Theta KNL during 
prototyping (scaled 
own due to queueing 

policy quirks)

~100M Compute Hours 
used across both sites



Lessons Learned

§ Parsl processes can disconnect from compute side workers
§ Remotely Driven Workflows (AWS? funcx?)
§ Utilization of Workflow Nodes (NERSC and ALCF both exploring)

§ Further Containerization Studies
§ Do we gain or lose time by using containers?
§ If we lose time, do we lose enough that we need to worry?

§ Code Improvements Toward Parallelization
§ Downside of containers is that we can’t put new work into the container in this workflow
§ Can either minimize lost time in the container or work around this otherwise



Conclusions

§ Largest Survey Simulation

§ Workflow Entirely Python Driven

§ Flexible Containerization

§ Workflow Itself Flexible
§ Parsl image processing
§ Parsl science pipeline

Vera Rubin Observatory



THANKS FOR LISTENING!

avillarreal@anl.gov works for any extended questions!
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