Scaling Shifts .
Seriously Smashes
Serverless Systems

Computational Spectroscopy with funcX

@

Eric Jonas



Whoaml ?

Occupy the Cloud: Distributed Computing for the 99%

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin Recht
University of California, Berkeley
{jonas, gifan, shivaram, istoica, brecht} @eecs.berkeley.edu

ABSTRACT

Distributed computing remains inaccessible to a large number of
users, in spite of many open source platforms and extensive com-
mercial offerings. While distributed computation frameworks have
moved beyond a simple map-reduce model, many users are still
left to struggle with complex cluster management and configuration
tools, even for running simple embarrassingly parallel jobs. We argue
that stateless functions represent a viable platform for these users,
eliminating cluster management overhead, fulfilling the promise
of elasticity. Furthermore, using our prototype implementation, Py-
Wren, we show that this model is general enough to implement a
number of distributed computing models, such as BSP, efficiently.
Extrapolating from recent trends in network bandwidth and the ad-
vent of disaggregated storage, we suggest that stateless functions are
a natural fit for data processing in future computing environments.

CCS CONCEPTS

* Computer systems organization — Cloud computing; * Com-
puting methodologies — Distributed programming languages;

KEYWORDS
Serverless, Distributed Computing, AWS Lambda, PyWren

ACM Reference Format:

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin
Recht University of California, Berkeley {jonas, qifan, shivaram, istoica,
brecht} @eecs.berkeley.edu. 2017. Occupy the Cloud: Distributed Computing
for the 99%. In Proceedings of SoCC 17, Santa Clara, CA, USA, September
24-27, 2017, 7T pages.

https://doi.org/10.1145/3127479.3128601

1 INTRODUCTION

Despite a decade of availability, the twin promises of scale and elas-
ticity [2] remain out of reach for a large number of cloud computing
users. Academic and commercially-successful platforms (Apache
Hadoop, Apache Spark) with tremendous corporate backing (Ama-
zon, Microsoft, Google) still present high barriers to entry for the
average data scientist or scientific computing user. In fact, taking
advantage of elasticity remains challenging for even sophisticated

target on-premise installations at large scale. On commercial cloud
platforms, a novice user confronts a dizzying array of potential deci-
sions: one must ahead of time decide on instance type, cluster size,
pricing model, programming model, and task granularity.

Such challenges are particularly surprising considering that the
vast number of data analytic and scientific computing workloads
remain embarrassingly parallel. Hyperparameter tuning for machine
learning, Monte Carlo simulation for computational physics, and
featurization for data science all fit well into a traditional map-reduce
framework. Yet even at UC Berkeley, we have found via informal
surveys that the majority of machine learning graduate students have
never written a cluster computing job due to complexity of setting
up cloud platforms.

In this paper we argue that a serverless execution model with
stateless functions can enable radically-simpler, fundamentally elas-
tic, and more user-friendly distributed data processing systems. In
this model, we have one simple primitive: users submit functions
that are executed in a remote container; the functions are stateless as
all the state for the function, including input, output is accessed from
shared remote storage. Surprisingly, we find that the performance
degradation from using such an approach is negligible for many
workloads and thus, our simple primitive is in fact general enough
to implement a number of higher-level data processing abstractions,
including MapReduce and parameter servers.

Recently cloud providers (e.g., AWS Lambda, Google Cloud
Functions) and open source projects (e.g., OpenLambda [16], Open-
Whisk [31]) have developed infrastructure to run event-driven, state-
less functions as micro-services. In this model, a function is de-
ployed once and is invoked repeatedly whenever new inputs arrive
and elastically scales with input size. Our key insight is that we
can dynamically inject code into these functions, which combined
with remote storage, allows us to build a data processing system that
inherits the elasticity of the serverless model while addressing the
simplicity for end users.

We describe a prototype system, PyWren!, developed in Python
with AWS Lambda. By employing only stateless functions, Py-
Wren helps users avoid the significant developer and management
overhead that has until now been a necessary prerequisite. The com-
plexity of state management can instead be captured by a global

users. as the maioritii of these frameworks were desiﬁned to first scheduler and fast remote storage. With PyWren, we seek to under-

Cloud Programming Simplified:
A Berkeley View on Serverless Computing

Eric Jonas Johann Schleier-Smith  Vikram Sreekanti Chia-Che Tsai
Anurag Khandelwal Qifan Pu Vaishaal Shankar Joao Carreira
Karl Krauth Neeraja Yadwadkar  Joseph E. Gonzalez Raluca Ada Popa
Ion Stoica David A. Patterson

UC Berkeley

serverlessview@berkeley.edu

Abstract

Serverless cloud computing handles virtually all the system administration operations needed to make it
easier for programmers to use the cloud. It provides an interface that greatly simplifies cloud programming,
and represents an evolution that parallels the transition from assembly language to high-level programming
languages. This paper gives a quick history of cloud computing, including an accounting of the predictions
of the 2009 Berkeley View of Cloud Computing paper, explains the motivation for serverless computing,
describes applications that stretch the current limits of serverless, and then lists obstacles and research
opportunities required for serverless computing to fulfill its full potential. Just as the 2009 paper identified
challenges for the cloud and predicted they would be addressed and that cloud use would accelerate, we
predict these issues are solvable and that serverless computing will grow to dominate the future of cloud

1902.03383v1 [cs.0S] 9 Feb 2019

computing.

Contents
1 Introduction to Serverless Computing 3
— 2 Emergence of Serverless Computing 5
> 2.1 Contextualizing Serverless Computing . . . . . . . .. .. .. ... ... ... . 6
'>'<-‘ 2.2 Attractiveness of Serverless Computing . . . . . . . .. .. ... ... . oL 8

=

< 3 Limitations of Today’s Serverless Computing Platforms 9
3.1 Inadequate storage for fine-grained operations . . . . . . . .. ... ... ... .. 12
3.2 Lack of fine-grained coordination . . . . . .. ... .. ..o L oL 12
3.3 Poor performance for standard communication patterns . . . . .. ... ... .. .. 13
3.4 Predictable Performance . . . . . . . . . ... .. L 14

- —— 4 What Serverless Computine Should Become 15



But what do | do now?

My research group’s goal?

Rapid understanding of every unknown small molecule

Via automated analysis and experimentation



What do | work on?

Inverse problems for spectroscopy with machine learning



What do | work on?

Inverse problems for spectroscopy with machine learning

The forward problem

o‘x-.

(easy-ish)

NH-
C1OH12N20
HO Chemical shifts
\ e
Molecular 200 150 100 50 0
structure e

The inverse problem
(hard)



What do | work on?

Inverse problems for spectroscopy with machine learning

The forward problem

.‘\..

(easy-ish)

NH-
C10H12N2O
HO
A\
N B 1 A
Molecular 200 150 100 50 0

structure

The inverse problem
(hard)



What do | work on?

Inverse problems for spectroscopy with machine learning

The forward problem

- B . o N 2 - =
ST a0 A T i , T

(easy-ish)

total time per molecule

3%9?\
N2 : 12.7h
C10H12N20 E 1 @
s 10 ‘3
= <
HO N = : 3.0h 3.3h
o o lG*\
N [ : o
Molecular H 200 150 100 50 0 g 10° 3 O‘Sh
structure = :
= <
” {o1h o
1012 E ® b

' ' '

10 15 20 25 30
number of atoms in molecule

The inverse problem
(hard)



What do | work on?

Inverse problems for spectroscopy with machine learning

The forward problem * &

- B . o N 2 - =
ST a0 A T i , T

(easy-ish)

NH>
C. H_NO

10 12 2 )

£ 10
Q
HO 2
) &
N n =

H 6o 1% 100 50 ; v 107 -

Molecular 8 .
structure - |
(=)
-

10°1

The inverse problem
(hard)

total time per molecule

number of atoms in molecule

39 9h
i
12.7h
e
3 0h 3.3h
13h 1.‘5?‘
i
0.5h
i
2h
10.1h
). 0.
10 15 20 25



funcX to the rescue!

Compute requirements : simulating chemical shifts



funcX to the rescue!

Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h
(Say ~40 core-h on avg)
(0.1-1 wall-clock on a modern node)



funcX to the rescue!

Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h
(Say ~40 core-h on avg)
(0.1-1 wall-clock on a modern node)

| have 100,000 of them
~4M core-h total



funcX to the rescue!

Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h
(Say ~40 core-h on avg)
(0.1-1 wall-clock on a modern node)

| have 100,000 of them
~4M core-h total

Input size: ~10kB

Outputs size: ~1 MB



funcX to the rescue!

Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h
(Say ~40 core-h on avg)
(0.1-1 wall-clock on a modern node)

| have 100,000 of them
~4M core-h total

Input size: ~10kB

Outputs size: ~1 MB

Embarrassingly parallel




funcX to the rescue!

Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h How . does this take?

(Say ~40 core-h on avg)
(0.1-1 wall-clock on a modern node)

| have 100,000 of them
~4M core-h total

Input size: ~10kB

~/ years on

a workstation ~1 month at TACC thanks to funcX

Outputs size: ~1 MB

Embarrassingly parallel



How do | (mis-)use funcX



How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget



How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget

My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)



How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget

My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

e | maintain this Is a common use case!



How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget

My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

e | maintain this Is a common use case!

e | don’t want to think about the endpoint too
much



How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget

My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

e | maintain this Is a common use case!

e | don’t want to think about the endpoint too
much

* So | fire off 100k tasks and don’t worry about it...



How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget

My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

e | maintain this Is a common use case!

Actual photo of funcX devops team

* | don’t want to think about the endpoint too
much

* So | fire off 100k tasks and don’t worry about it...



Solutions



Solutions

» Substantially reduce size of return values
(1MB -> 5kB) by staging them to S3



Solutions

» Substantially reduce size of return values
(1MB -> 5kB) by staging them to S3

 FuncX team has developed an Executor
interface (similar to Python’s AsynclO) that
makes this scale of tasks easy



Solutions

* Substantially reduce size of return values
(1MB -> 5kB) by staging them to S3

 FuncX team has developed an Executor
interface (similar to Python’s AsynclO) that
makes this scale of tasks easy

* Everything works swimmingly now!




The future

Feature requests



The future

Feature requests

 Visibility into the myriad of queues used



The future

Feature requests

 Visibility into the myriad of queues used

* Flush the queue completely (reset to zero)



The future

Feature requests

* Visibility into the myriad of queues used
* Flush the queue completely (reset to zero)

 Hosted endpoints?



The future

Feature requests

* Visibility into the myriad of queues used
* Flush the queue completely (reset to zero)

 Hosted endpoints?

T
lEl' _l-r—.

F I

Ia i_‘ A

lt‘ *"_;.-l : !1 |

~/ years on
a workstation



The future

Feature requests

* Visibility into the myriad of queues used
* Flush the queue completely (reset to zero)

 Hosted endpoints?

~{ years on ~1 month at TACC
a workstation thanks to funcX



The future

Feature requests
 Visibility into the myriad of queues used

* Flush the queue completely (reset to zero)

 Hosted endpoints?

57
%

e
£°3
= T
Py
=+
-~
=
o
=
|
=
&=
<
=1
St
=
=3
<
=
—
_
pt
=
o=
=
=
~p

~1 month at TACC |
|
thanks to funcX This should take an hour!

~/ years on
a workstation



The future

Feature requests

..A ’] 's

1
‘
.
P B —

_;_'-'--‘._—‘;P.'—"——:-'—'--. -
R bR ORI

2 e @

._._,
e
, —

nl :

\

LRI e—
o i —
L ——

/" ,l,.

~7 years on ~1 month at TACC
a workstation thanks to funcX

This should take an hour!



The future

Feature requests

o

I!!lln :] " :'sl
IEg'__'_| l |

~7 years on ~1 month at TACC
a workstation thanks to funcX

This should take an hour!

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!



The future

Feature requests

~7 years on ~1 month at TACC
a workstation thanks to funcX

This should take an hour!

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!

Endpoint-agnostic computation



The future

Feature requests

~7 years on ~1 month at TACC
a workstation thanks to funcX

This should take an hour!

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!

Endpoint-agnostic computation

Embedded into language significantly expands accessibility!



The future

Feature requests

~7 years on ~1 month at TACC
a workstation thanks to funcX

This should take an hour!

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!

Endpoint-agnostic computation

Embedded into language significantly expands accessibility!

funcX lets us all spend more time on science
and less on infrastructure!






