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ABSTRACT

Distributed computing remains inaccessible to a large number of
users, in spite of many open source platforms and extensive com-
mercial offerings. While distributed computation frameworks have
moved beyond a simple map-reduce model, many users are still
left to struggle with complex cluster management and configuration
tools, even for running simple embarrassingly parallel jobs. We argue
that stateless functions represent a viable platform for these users,
eliminating cluster management overhead, fulfilling the promise
of elasticity. Furthermore, using our prototype implementation, Py-
Wren, we show that this model is general enough to implement a
number of distributed computing models, such as BSP, efficiently.
Extrapolating from recent trends in network bandwidth and the ad-
vent of disaggregated storage, we suggest that stateless functions are
a natural fit for data processing in future computing environments.
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1 INTRODUCTION

Despite a decade of availability, the twin promises of scale and elas-
ticity [2] remain out of reach for a large number of cloud computing
users. Academic and commercially-successful platforms (Apache
Hadoop, Apache Spark) with tremendous corporate backing (Ama-
zon, Microsoft, Google) still present high barriers to entry for the
average data scientist or scientific computing user. In fact, taking
advantage of elasticity remains challenging for even sophisticated

target on-premise installations at large scale. On commercial cloud
platforms, a novice user confronts a dizzying array of potential deci-
sions: one must ahead of time decide on instance type, cluster size,
pricing model, programming model, and task granularity.

Such challenges are particularly surprising considering that the
vast number of data analytic and scientific computing workloads
remain embarrassingly parallel. Hyperparameter tuning for machine
learning, Monte Carlo simulation for computational physics, and
featurization for data science all fit well into a traditional map-reduce
framework. Yet even at UC Berkeley, we have found via informal
surveys that the majority of machine learning graduate students have
never written a cluster computing job due to complexity of setting
up cloud platforms.

In this paper we argue that a serverless execution model with
stateless functions can enable radically-simpler, fundamentally elas-
tic, and more user-friendly distributed data processing systems. In
this model, we have one simple primitive: users submit functions
that are executed in a remote container; the functions are stateless as
all the state for the function, including input, output is accessed from
shared remote storage. Surprisingly, we find that the performance
degradation from using such an approach is negligible for many
workloads and thus, our simple primitive is in fact general enough
to implement a number of higher-level data processing abstractions,
including MapReduce and parameter servers.

Recently cloud providers (e.g., AWS Lambda, Google Cloud
Functions) and open source projects (e.g., OpenLambda [16], Open-
Whisk [31]) have developed infrastructure to run event-driven, state-
less functions as micro-services. In this model, a function is de-
ployed once and is invoked repeatedly whenever new inputs arrive
and elastically scales with input size. Our key insight is that we
can dynamically inject code into these functions, which combined
with remote storage, allows us to build a data processing system that
inherits the elasticity of the serverless model while addressing the
simplicity for end users.

We describe a prototype system, PyWren!, developed in Python
with AWS Lambda. By employing only stateless functions, Py-
Wren helps users avoid the significant developer and management
overhead that has until now been a necessary prerequisite. The com-
plexity of state management can instead be captured by a global

users. as the maioritii of these frameworks were desiﬁned to first scheduler and fast remote storage. With PyWren, we seek to under-
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funcX to the rescue!

Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h How . does this take?

(Say ~40 core-h on avg)
(0.1-1 wall-clock on a modern node)

| have 100,000 of them
~4M core-h total

Input size: ~10kB

~/ years on

a workstation ~1 month at TACC thanks to funcX

Outputs size: ~1 MB

Embarrassingly parallel
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How do | (mis-)use funcX

 Much of FaaS work has focused on real-time
use, but that’s not my primary use case — | want
fire-and-forget

My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

e | maintain this Is a common use case!

Actual photo of funcX devops team

* | don’t want to think about the endpoint too
much

* So | fire off 100k tasks and don’t worry about it...



Solutions



Solutions

» Substantially reduce size of return values
(1MB -> 5kB) by staging them to S3



Solutions

» Substantially reduce size of return values
(1MB -> 5kB) by staging them to S3

 FuncX team has developed an Executor
interface (similar to Python’s AsynclO) that
makes this scale of tasks easy



Solutions

* Substantially reduce size of return values
(1MB -> 5kB) by staging them to S3

 FuncX team has developed an Executor
interface (similar to Python’s AsynclO) that
makes this scale of tasks easy

* Everything works swimmingly now!
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The future

Feature requests

~7 years on ~1 month at TACC
a workstation thanks to funcX

This should take an hour!

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!

Endpoint-agnostic computation

Embedded into language significantly expands accessibility!

funcX lets us all spend more time on science
and less on infrastructure!






