
Eric Jonas
Assistant Professor, Department of Computer Science 
Physical Sciences Division, University of Chicago

ericj@uchicago.edu | @stochastician | jonaslab.uchicago.edu

Scaling Shifts 
Seriously Smashes  
Serverless Systems
Computational Spectroscopy with funcX

Who am I ?

But what do I do now?

Rapid understanding of every unknown small molecule

My research group’s goal?

Via automated analysis and experimentation

What do I work on?
Inverse problems for spectroscopy with machine learning

What do I work on?
Inverse problems for spectroscopy with machine learning

The forward problem

The inverse problem

C10H12N2O

(easy-ish)

(hard)

Chemical shifts

Molecular

structure

What do I work on?
Inverse problems for spectroscopy with machine learning

The forward problem

The inverse problem

C10H12N2O

(easy-ish)

(hard)

Chemical shifts

Molecular

structure

Where does the data
come from? Simulation!

What do I work on?
Inverse problems for spectroscopy with machine learning

The forward problem

The inverse problem

C10H12N2O

(easy-ish)

(hard)

Chemical shifts

Molecular

structure

Where does the data
come from? Simulation!

What do I work on?
Inverse problems for spectroscopy with machine learning

The forward problem

The inverse problem

C10H12N2O

(easy-ish)

(hard)

Chemical shifts

Molecular

structure

Where does the data
come from? Simulation!

funcX to the rescue!
Compute requirements : simulating chemical shifts

funcX to the rescue!
Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h  
(Say ~40 core-h on avg) 

(0.1-1 wall-clock on a modern node)

funcX to the rescue!
Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h  
(Say ~40 core-h on avg) 

(0.1-1 wall-clock on a modern node)

I have 100,000 of them
~4M core-h total

funcX to the rescue!
Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h  
(Say ~40 core-h on avg) 

(0.1-1 wall-clock on a modern node)

I have 100,000 of them
~4M core-h total

Input size: ~10kB

Outputs size: ~1 MB

funcX to the rescue!
Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h  
(Say ~40 core-h on avg) 

(0.1-1 wall-clock on a modern node)

I have 100,000 of them
~4M core-h total

Input size: ~10kB

Outputs size: ~1 MB

Embarrassingly parallel

funcX to the rescue!
Compute requirements : simulating chemical shifts

Each task takes ~10-60 core-h  
(Say ~40 core-h on avg) 

(0.1-1 wall-clock on a modern node)

I have 100,000 of them
~4M core-h total

Input size: ~10kB

Outputs size: ~1 MB

Embarrassingly parallel

How long does this take?

~7 years on

a workstation ~1 month at TACC thanks to funcX

How do I (mis-)use funcX

How do I (mis-)use funcX

• Much of FaaS work has focused on real-time
use, but that’s not my primary use case — I want
fire-and-forget

How do I (mis-)use funcX

• Much of FaaS work has focused on real-time
use, but that’s not my primary use case — I want
fire-and-forget

• My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

How do I (mis-)use funcX

• Much of FaaS work has focused on real-time
use, but that’s not my primary use case — I want
fire-and-forget

• My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

• I maintain this is a common use case!

How do I (mis-)use funcX

• Much of FaaS work has focused on real-time
use, but that’s not my primary use case — I want
fire-and-forget

• My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

• I maintain this is a common use case!

• I don’t want to think about the endpoint too
much

How do I (mis-)use funcX

• Much of FaaS work has focused on real-time
use, but that’s not my primary use case — I want
fire-and-forget

• My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

• I maintain this is a common use case!

• I don’t want to think about the endpoint too
much

• So I fire off 100k tasks and don’t worry about it…

How do I (mis-)use funcX

• Much of FaaS work has focused on real-time
use, but that’s not my primary use case — I want
fire-and-forget

• My tasks are generally idempotent — retries can
be fine (in fact they cache into $SCRATCH on the
endpoint)

• I maintain this is a common use case!

• I don’t want to think about the endpoint too
much

• So I fire off 100k tasks and don’t worry about it…

Actual photo of funcX devops team

Solutions

Solutions
• Substantially reduce size of return values

(1MB -> 5kB) by staging them to S3

Solutions
• Substantially reduce size of return values

(1MB -> 5kB) by staging them to S3

• FuncX team has developed an Executor
interface (similar to Python’s AsyncIO) that
makes this scale of tasks easy

Solutions
• Substantially reduce size of return values

(1MB -> 5kB) by staging them to S3

• FuncX team has developed an Executor
interface (similar to Python’s AsyncIO) that
makes this scale of tasks easy

• Everything works swimmingly now!

The future
Feature requests

The future
Feature requests
• Visibility into the myriad of queues used

The future
Feature requests
• Visibility into the myriad of queues used

• Flush the queue completely (reset to zero)

The future
Feature requests
• Visibility into the myriad of queues used

• Flush the queue completely (reset to zero)

• Hosted endpoints?

The future
Feature requests
• Visibility into the myriad of queues used

• Flush the queue completely (reset to zero)

• Hosted endpoints?

~7 years on

a workstation

The future
Feature requests
• Visibility into the myriad of queues used

• Flush the queue completely (reset to zero)

• Hosted endpoints?

~7 years on

a workstation

~1 month at TACC  
thanks to funcX

The future
Feature requests
• Visibility into the myriad of queues used

• Flush the queue completely (reset to zero)

• Hosted endpoints?

~7 years on

a workstation This should take an hour!~1 month at TACC  

thanks to funcX

The future
Feature requests

~7 years on

a workstation This should take an hour!~1 month at TACC  

thanks to funcX

The future
Feature requests

~7 years on

a workstation This should take an hour!~1 month at TACC  

thanks to funcX

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!

The future
Feature requests

~7 years on

a workstation This should take an hour!~1 month at TACC  

thanks to funcX

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!
Endpoint-agnostic computation

The future
Feature requests

~7 years on

a workstation This should take an hour!~1 month at TACC  

thanks to funcX

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!
Endpoint-agnostic computation

Embedded into language significantly expands accessibility!

The future
Feature requests

~7 years on

a workstation This should take an hour!~1 month at TACC  

thanks to funcX

FuncX + national supercomputing infrastructure: the thermodynamic limit of computation!
Endpoint-agnostic computation

Embedded into language significantly expands accessibility!

funcX lets us all spend more time on science
and less on infrastructure!

