
Welcome!  Parsl and funcX Fest 2021

October 27-28, 2021

Ian Foster, Daniel S. Katz, Kyle Chard



2

Parsl Code of Conduct

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making 
participation in our project and our community a harassment-free and bullying-free experience for everyone, regardless 
of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, 
socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Examples of behavior that contributes to creating a positive environment include:

● Using welcoming and inclusive language

● Being respectful of differing viewpoints and experiences

● Gracefully accepting constructive criticism

● Focusing on what is best for the community

● Showing empathy towards other community members

● Respecting the work of others by recognizing acknowledgment/citation requests of original authors

● Being explicit about how we want our own work to be cited or acknowledged

This meeting will follow the same Code of Conduct.

Issues: contact Dan Katz (dskatz@illinois.edu)

https://github.com/Parsl/parsl/blob/master/CODE_OF_CONDUCT.md

mailto:dskatz@illinois.edu
https://github.com/Parsl/parsl/blob/master/CODE_OF_CONDUCT.md


3



4

Introducing the team(s)

Uriel 
Mandujano



5

Thank you funding agencies and project partners

Argonne LDRDs

▪ 2022-0230 Productive Exascale Analysis Workflows for Numerical Cosmology
▪ 2021-0152 Creating a Robust and Scalable Framework for On-demand Analysis and AI-based Experiment Steering
▪ 2019-0217 Establishing a Usable, Scalable, and Reproducible Computational Ecosystem for Dark Energy Science

Dark Energy Science Collaboration

DOE ECP PRJ1008564 ExaWorks project

DOE DE-NA0003963 Center for Exascale-enabled Scramjet Design (CEESD) 

Discovery Partners Institute (DPI): Airborne-Satellite-AI-HPC integrative 
framework (ASAI)

1550588 (U Chicago/UIUC) 
1550476 (Notre Dame), 
1550475 (Colorado State) 
1550562 (Northern Arizona)
1550528 (College of New Jersey)

2004894 (U Chicago)
2004932 (UIUC)



6

Parsl and funcX are growing!

> 10M tasks, >60K functions, >3000 endpoints58 contributors,  >400K PyPI downloads



7

Goals for this meeting

▪ Learn about Parsl and funcX, and where they are going
▪ Learn about users of Parsl & funcX

– Meet the community
– Share experiences

▪ Find out how to contribute to Parsl/funcX
– Help us develop and better engage the Parsl & funcX community

▪ Provide feedback to the Parsl/funcX team
– Help us prioritize development activities
– Help us identify shortcomings
– Understand what needs work

▪ Form new collaborations



8

Agenda

Day 1
9:00 am - Welcome! 
9:10 am - Intro to Parsl and funcX 
9:30 am - Session 1 (Chair: Ben Clifford)

10:30 am - Tech talk: Zhuozhao Li, Parsl + funcX

10:45 am - Break

11:15 am - Session 2 (Chair: Dan Katz)

12:15 -  Parallel Works Tech Talks

12:30 - Tech talk:  Kir Nagaitsev, Asynchronous APIs 
in funcX

12:45 - Day 1 Closing

Day 2
1:00 pm - Session 3 (Chair: Yadu Babuji)

2:15 pm - Tech Talk: Douglas Thain, Resource 
Management for Dynamic Function Distribution

2:30 pm - Break

3:00 pm - Tech Talks: Ben Clifford, Ben Galewsky,  and 
Raf Vescovi

4:00 Session 4 (Chair: Ryan Chard)

5:00 pm - Closing

https://parsl-project.org/parslfest2021.html

https://parsl-project.org/parslfest2021.html


Introduction to Parsl and funcX

Kyle Chard
chard@uchicago.edu



10

Composition and parallelism

Software is increasingly assembled rather than written
– High-level language to integrate and wrap components from many sources

Parallel and distributed computing is ubiquitous 
– Increasing data sizes combined with plateauing sequential processing power

Python (and the SciPy ecosystem) is the de facto standard language/environment

– Libraries, tools, Jupyter, etc. 

Parsl allows for the natural expression of parallelism in Python: 
– Programs can express opportunities for parallelism

– Realized, at execution time, using different execution models on different platforms

funcX enables fire-and-forget remote and distributed execution 



11

Parsl: a parallel programming library for Python

Apps define opportunities for parallelism
• Python apps call Python functions
• Bash apps call external applications

Apps return “futures”: a proxy for a result 
that might not yet be available

Apps run concurrently respecting data 
dependencies. Natural parallel programming!

Parsl scripts are independent of where they 
run. Write once run anywhere!

pip install parsl

Try Parsl: https://parsl-project.org/binder



12

Data-driven example: parallel geospatial analysis

 Land-use Image processing pipeline for the MODIS remote sensor  

Analyze

Landuse

Colorize

Mark

Assemble



13

Parsl decomposes parallel execution into a dynamic 
task-dependency graph



14

Parsl programs can be executed in different ways on 
different systems

Executors (concurrent.futures.Executor interface)

FluxWork 
Queue

RADICAL-
Cybertools

IPyParallelHTEX EXEX

Providers

Production

Prototype

Deprecated

Slurm

PBS

LSF

Cobalt

GridEngine

HTCondor

Kubernetes

Google

funcX

AWS

Ad hoc



15

Parsl executors scale to 2M 
tasks/256K workers

HTEX and EXEX outperform other 
Python-based approaches

Parsl scales to more than 250K 
workers (8K nodes) and ~2M tasks

Strong scaling (50K 1s tasks)

Weak scaling (10 1s tasks per worker)

Babuji et.al. "Parsl: Pervasive Parallel Programming in Python."  
ACM International Symposium on High-Performance Parallel and 
Distributed Computing (HPDC). 2019. 



16

funcX: managed and federated FaaS

• Using Parsl to manage remote (and multi-site) computation can be difficult 
(e.g., persistent process, SSH connections, 2FA)

• Many Parsl programs have few (or no dependencies)

• Configuring Parsl for different systems can be complicated

• Can we build a simpler model for running tasks remotely?

– Cloud-hosted service offering fire-and-forget function execution

– Register and share FaaS compute endpoints

– Register and share Python functions

– Reliable, scalable, secure function execution on arbitrary remote endpoints

Try funcX: https://funcx.org/binder



17

Transform laptops, clusters, clouds into function 
serving endpoints

▪ Python-based agent (pip or Conda) 
installable in user space

▪ Elastically provisions resources from 
local, cluster, kubernetes, or cloud system 

(using Parsl)

▪ Manages concurrent execution on 
provisioned resources

▪ Optionally manages execution in 
containers 

▪ Share endpoints with collaborators

$ pip install funcx-endpoint

$ funcx-endpoint configure myep

$ funcx-endpoint start myep



18

Register and share functions

Create funcX client (and authenticate)

Define and register Python function

def compute(input_args):
    # do something
    return results
def compute(input_args):
    # do something
    return results
def compute(input_args):
    # do something
    return results



19

Execute tasks on any accessible endpoint

Select: function ID, endpoint ID, and input 
arguments

Retrieve results asynchronously (funcX stores 
results in the cloud) 

F(ep1,1)
F(ep1, 2)
F(ep1, 3)
F(ep1, 4)
F(ep1, 5)
F(ep1, 6)
F(ep2, 7)



20

funcX scales to 100K+ workers
• funcX endpoints deployed on ALCF Theta and NERSC Cori

• Strong scaling (100K concurrent functions) shows good scaling up to 2K 
containers even with short no-op/sleep tasks

• Weak scaling (10 tasks per container) scales to 131K concurrent containers 
(1.3M tasks) 

R. Chard et.al. "FuncX: A Federated Function Serving Fabric for Science."  
ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC). 2020.



21

Automating the research lifecycle with the Globus 
Automate platform and funcX
▪ Managed, secure, and 

reliable task orchestration 
across heterogenous 
resources

▪ Declarative language for 
composition

▪ Extensible custom actions
▪ Event-driven execution 



22

When should you use Parsl or funcX?

Parsl
Workflows

Single site 

High performance

Management of MPI apps

Integrated wide-area data 
management

funcX
Bag of tasks

One or more sites

Fire-and-forget execution

Execution in containers

Share functions and endpoints

Automated, event-based computing

Parsl + funcX
Workflows executed remotely across one or 

more sites



23

Agenda

Day 1
9:00 am - Welcome! 
9:10 am - Intro to Parsl and funcX 

9:30 am - Session 1 (Chair: Ben Clifford)

10:30 am - Tech talk: Zhuozhao Li, Parsl + funcX

10:45 am - Break

11:15 am - Session 2 (Chair: Dan Katz)

12:15 -  Parallel Works Tech Talks

12:30 - Tech talk:  Kir Nagaitsev, Asynchronous APIs 
in funcX

12:45 - Day 1 Closing

Day 2
1:00 pm - Session 3 (Chair: Yadu Babuji)

2:15 pm - Tech Talk: Douglas Thain, Resource 
Management for Dynamic Function Distribution

2:30 pm - Break

3:00 pm - Tech Talks: Ben Clifford, Ben Galewsky,  and 
Raf Vescovi

4:00 Session 4 (Chair: Ryan Chard)

5:00 pm - Closing

https://parsl-project.org/parslfest2021.html

https://parsl-project.org/parslfest2021.html


24



25

Other functionality provided by Parsl

Globus. Delegated authentication 
and wide area data management

Fault tolerance. Support for retries, 
checkpointing, and memoization

Containers. Sandboxed execution 
environments for workers and tasks

Data management. Automated 
staging with HTTP, FTP, and Globus 

Multi site. Combining 
executors/providers for execution 
across different resources
Elasticity. Automated resource 
expansion/retraction based on 
workload

Monitoring. Workflow and resource 
monitoring and visualization

Reproducibility. Capture workflow 
provenance in the task graph

Jupyter integration. Seamless 
description and management of 
workflows

Resource abstraction. Block-based 
model overlaying different providers 
and resources



26

Introducing the team(s)

Rachana Ananthakrishnan

Yadu Babuji

Ben Blaiszik

Josh Bryan

Kyle Chard

Ryan Chard

Ben Clifford

Ian Foster

Ben Galewsky

Dan Katz

Zhuozhao Li

Uriel Mandujano

Kir Nagaitsev

Stephen Rosen

Tyler Skluzacek

Logan Ward

Mike Wilde

Anna Woodard



27

Expressing parallelism using Parsl

1) Wrap the science applications as Parsl Apps:
@bash_app
def simulate(outputs=[]):
    return './simulation_app.exe {outputs[0]}’

@python_app
def analyze(inputs=[]):
    return analysis_package(inputs)

@bash_app
def merge(inputs=[], outputs=[]):
    i = inputs; o = outputs
    return './merge {1} {0}'.format(' '.join(i), o[0])



28

Expressing a many task workflow in Parsl

2) Execute the parallel workflow by calling Apps:

sims = []

for i in range (nsims):
     sims.append(simulate(outputs=['sim-%s.txt' % i]))

all = merge(inputs=[i.outputs[0] for i in sims],
            outputs=['all.txt'])

result = analyze(inputs=[all.outputs[0]])



29

FuncX: a federated function serving ecosystem for research

Endpoints:
– User-deployed and managed

– Dynamically provision resources, deploy containers, and execute 
functions

– Exploit local architecture/accelerators

funcX Service: 
– Single reliable cloud interface

– Register and share endpoints

– Register, share, run functions

Choose where to execute functions
– Closest, cheapest, fastest, accelerators …



30

Parallel applications require different execution models

High-throughput workloads
– Protein docking, image processing, materials reconstructions

– Requirements: 1000s of tasks, 100s of nodes, days of execution, reliability, 
usability, monitoring, elasticity, etc. 

Extreme-scale workloads
– Cosmology simulations, imaging the arctic, genomics analysis

– Requirements: millions of tasks, 1000s of nodes (100,000s cores), days of 
execution, capacity

Interactive and real-time workloads
– Materials science, cosmic ray shower analysis, machine learning inference

– Requirements: 10s of nodes, seconds-minutes, rapid response, pipelining



31

Parsl implements a modular executor interface

High-throughput executor (HTEX)
– Pilot job-based model with multi-threaded manager deployed on workers

– Designed for ease of use, fault-tolerance, etc.

– <2000 nodes (~60K workers),  Ms tasks,   task duration/nodes > 0.01

Extreme-scale executor (EXEX)*
– Distributed MPI job manages execution. Manager rank communicates 

workload to other worker ranks directly

– Designed for extreme scale execution on supercomputers

– >1000 nodes (>30K workers),  Ms tasks,  >1m task duration

Low-latency Executor (LLEX)*
– Direct socket communication to workers, fixed resource pool, limited features

– 10s nodes, <1M tasks, <1m tasks

Others: WorkQueue and IPyParallel 



32

Parsl scripts are execution provider independent

The same script can be run locally, on grids, clouds, or 
supercomputers

Growing support for various schedulers and cloud vendors



33

Separation of code and execution

Choose execution environment 
at runtime. Parsl will direct 
tasks to the configured 
execution environment(s).



34

Monitoring 
and 
visualization

Workflow view Task view



35

Parsl is being used in a wide range of scientific applications

E

C

A B

D

G

• Machine learning to predict 
stopping power in materials

• Protein and biomolecule
structure and interaction

• LSST simulation and weak 
lensing using sky surveys

• Cosmic ray showers in 
QuarkNet

• Information extraction to 
classify image types in papers

• Materials science at the 
Advanced Photon Source

• Machine learning and data 
analytics in materials

A

B

C

D

E

F

G
F



36

HPC and science education using Parsl

http://us-rse.org/rse-stories/2020/ben-glick/ https://quarknet.org/content/about-e-labs

http://us-rse.org/rse-stories/2020/ben-glick/
https://quarknet.org/content/about-e-labs


37

Building on Parsl to create specialized scientific applications and services

QCArchive
Compile, aggregate, 
query, and share 
quantum chemistry data 
on diverse systems

Data and Learning Hub 
for Science (DLHub)
Interactive execution of 
user-provided machine 
learning models in 
real-time

Coffea: Column Object 
Framework for 
Effective Analysis
Back-end-agnostic data 
processing libraries for 
granular event-based 
HEP analysis



38

Function as a Service (FaaS)

Serverless: Cloud provider provisions and manages all 
infrastructure 

FaaS: Developers work in terms of programming functions
1. Pick a runtime (e.g., Python)
2. Register function code
3. Run (and scale)
Low latency, on-demand, elastic scaling, easy to deploy and 
update

def compute(input_args):
    # do something
    return results



39

The COVID’19 data pipeline: Using AI and supercomputers to accelerate drug development

CHEMICAL 
LIBRARY DATABASE

AND MORE

known 
molecules4B

COMPUTING
RESOURCESCANONICALIZATION COMPUTE FEATURES DEEP LEARNING 

FILTERING

FINGERPRINTING SIMILARITY SEARCH

GENERATE IMAGES CNN FILTERING



40

Research Automation: Serial Crystallography 



41

Data and Learning Hub for Science (DLHub) 



42

MD

The Manufacturing and ML platform 
(MDML) 

Manufacturing and machine learning

Compute and storage continuum

Edge devices Laboratory machines HPC

1. Instrument sensors 
stream data to the 
MDML

2.  Use FaaS to analyze 
data on-demand

3. FaaS tasks distributed 
across the computing continuum

4. Results are used 
to guide the 
experiment

f(X)
func
X

Flame spray 
pyrolysis, MERF

Grafana Real-Time Dashboards



43

Lessons learned applying funcX to science use cases

✔ Abstracts the complexity of using diverse compute resources
✔ Simplicity: automatic scaling, single interface
✔ Flexible web-based authentication model
✔ Enables event-based processing and automated pipelines
✔ Increases portability between sites, systems, etc.
✔ Resources can be used efficiently and opportunistically
✔ Enables secure function/endpoint sharing with collaborators

� FaaS is not suitable for some applications
� Ratio of data size to compute must be reasonable
� Containerization does not always provide entirely portable codes
� Coarse allocation models do not map well to fine grain/short functions
� Decomposing applications isn’t always easy (or possible)



44

FaaS as offered by cloud providers

Cloud provider 1

Cloud provider 2

• Single provider, single 
location to submit and 
manage tasks

• Homogenous execution 
environment 

• Transparent and elastic 
execution

• Integrated with cloud 
provider data 
management



45

We still want
• Single interface

• Homogenous execution 
environment 

• Transparent and elastic 
execution

• Integrated with data 
management

FaaS as an interface to the distributed computing ecosystem


