~"Parsl funck

Welcome! Parsl and funcX Fest 2021

lan Foster, Daniel S. Katz, Kyle Chard

October 27-28, 2021

Seicies L ILLINOIS Argonne™

AAAAAAAAAAAAAAAAAA

Parsl Code of Conduct

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free and bullying-free experience for everyone, regardless
of age, body size, disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education,
socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation.

Examples of behavior that contributes to creating a positive environment include:

Using welcoming and inclusive language

Being respectful of differing viewpoints and experiences

Gracefully accepting constructive criticism

Focusing on what is best for the community

Showing empathy towards other community members

Respecting the work of others by recognizing acknowledgment/citation requests of original authors
Being explicit about how we want our own work to be cited or acknowledged

This meeting will follow the same Code of Conduct.

Issues: contact Dan Katz (dskatz@illinois.edu)
https://github.com/Parsl/parsl/blob/master/CODE OF CONDUCT.md

mailto:dskatz@illinois.edu
https://github.com/Parsl/parsl/blob/master/CODE_OF_CONDUCT.md

Introducing the team(s)

Uriel ~ &
Mandujano - | A R

CHICAGO
INNOVATION

Thank you funding agencies and project partners

o
Sfuncg

2004894 (U Chicago)
2004932 (UIUC)

="Parsl

1550588 (U Chicago/UIUC)
1550476 (Notre Dame),

1550475 (Colorado State)
1550562 (Northern Arizona)
1550528 (College of New Jersey)

Argonne LDRDs

= 2022-0230 Productive Exascale Analysis Workflows for Numerical Cosmology
= 2021-0152 Creating a Robust and Scalable Framework for On-demand Analysis and Al-based Experiment Steering
= 2019-0217 Establishing a Usable, Scalable, and Reproducible Computational Ecosystem for Dark Energy Science

Dark Energy Science Collaboration
DOE ECP PRJ1008564 ExaWorks project
DOE DE-NA0003963 Center for Exascale-enabled Scramjet Design (CEESD)

Discovery Partners Institute (DPI): Airborne-Satellite-Al-HPC integrative
framework (ASAI)

Count

Parsl and funcX are growing!

250 A

200 A

150 A

100 A

50 1

mEmm PyPi downloads (1000s)
I Website visitors (100s)
B Contributors

2017 2018 2019 2020 2021

58 contributors, >400K PyPl downloads

Count

1600 - I Users
I Endpoints
1400 1 == Functions (100s)
B Tasks (10,000s)
1200 A
1000 A
800 -
600 -
400 A
200 A

2019 2020 2021

> 10M tasks, >60K functions, >3000 endpoints

Goals for this meeting

Learn about Parsl and funcX, and where they are going
Learn about users of Parsl & funcX

— Meet the community

— Share experiences
Find out how to contribute to Parsl/funcX

— Help us develop and better engage the Parsl & funcX community
Provide feedback to the Parsl/funcX team

— Help us prioritize development activities

— Help us identify shortcomings

— Understand what needs work
Form new collaborations

Agenda

Day 1 Day 2

9:00 am - Welcome! 1:00 pm - Session 3 (Chair: Yadu Babuji)

9:10 am - Intro to Parsl and funcX

9:30 am - Session 1 (Chair: Ben Clifford) 2:15 pm - Tech Talk: Douglas Thain, Resource

Management for Dynamic Function Distribution
10:30 am - Tech talk: Zhuozhao Li, Parsl + funcX
2:30 pm - Break
10:45 am - Break
3:00 pm - Tech Talks: Ben Clifford, Ben Galewsky, and

11:15 am - Session 2 (Chair: Dan Katz) Raf Vescovi

12:15 - Parallel Works Tech Talks 4:00 Session 4 (Chair: Ryan Chard)
12:30 - Tech talk: Kir Nagaitsev, Asynchronous APIs 5:00 pm - Closing

in funcX

12:45 - Day 1 Closing

https://parsl-project.org/parslfest2021.html

https://parsl-project.org/parslfest2021.html

="Parsl

Introduction to Parsl and funcX

Kyle Chard
chard@uchicago.edu

Gcaicaco 4 ILLINOIS

Composition and parallelism

Software is increasingly assembled rather than written
— High-level language to integrate and wrap components from many sources

Parallel and distributed computing is ubiquitous
— Increasing data sizes combined with plateauing sequential processing power
Python (and the SciPy ecosystem) is the de facto standard language/environment
— Libraries, tools, Jupyter, etc.

Parsl allows for the natural expression of parallelism in Python:
— Programs can express opportunities for parallelism
— Realized, at execution time, using different execution models on different platforms

funcX enables fire-and-forget remote and distributed execution

10

Parsl: a parallel programming library for Python

Apps define opportunities for parallelism
* Python apps call Python functions
* Bash apps call external applications

Apps return “futures”: a proxy for a result
that might not yet be available

Apps run concurrently respecting data
dependencies. Natural parallel programming!

Parsl scripts are independent of where they
run. Write once run anywhere!

r
r
[L P(JI"SZ Try Parsl: https://parsl-project.org/binder

pip install parsl

@python_app
def hello ():

return 'Hello World!"' P pgthon

print(hello().result())
Hello World!
@bash_app

def echo hello(stdout='echo-hello.stdout'):
return 'echo "Hello World!"'

echo_hello().result() BASH

EEEEEEEEEEEEEEEEEEEE

with open('echo-hello.stdout', 'r') as ft:
print(f.read())

Hello World!

11

Data-driven example: parallel geospatial analysis

0
1
2
3
‘_
st
o
7
[

678910 MR 2526 272829 30 31 2 P B
I
a e Lip W . ik |
10 NEEE damPw 4 2
1" [jr' |8l %
2l B - A e
13[] B 3 %
19 e)
& i - - -
16
/ 2 T A
diasi -
. 4 o— —
ks sl Lo - Ny,
S 2 A
PR 2 B 4 i
i g e 52 -
/ . ~ T
5
N
; 7
1 11ve '
-

i . /

Land-use Image processing pipeline for the MODIS remote sensor

12

Pars|l decomposes parallel execu
task-dependency graph

F

" jupyter parslintroduction (unsaved changes)
| Python 3 O

File Edt View Insert Cell Kemel Widgets Help Not Trusted

+ 3 & B 4 ¥ MWRun B C W Makdown

Monte Carlo workflow
Many scientific applications use the monte-carlo method to compute results.
If a circle with radius r is inscribed inside a square with side length 2 then the area of the circle is zr” and the area of the square is (2r)?. Thus, if N

uniformly distributed random points are dropped within the suqare then approximately N x/4 will be inside the circle.

Each call to the function pi() is executed independently and in parallel. The avg_three() app is used to compute the average of the futures that were
returned from the pi() calls

The dependency chain looks like this:

App Calls pi() pi() pi()

\ | /
Futures a b ¢
YU &
App Call avg_points()
Future avg_pi

In [1: | # App that estimates pi by placing points in a box
@python_app
def pi(total):
import random
Set the size of the box (edge Length) in which we drop random points
edge_length = 10000
center = edge_length / 2
center ** 2
count = ©

for i in range(total):
Drop a random point in the box.
X,y = random.randint(1, edge_length),random.randint(1, edge_length)
Count points within the circle
if (x-center)**2 + (y-center)**2 ¢ c2:
count += 1

return (count*4/total)

App that computes the average of the values
@python_app
def avg_points(a, b,):
return (a + b + c)/3
Estimate three values for pi
a, b, c = pi(10**6), pi(10**6), pi(10**6)

Compute the average of the three estimates
avg_pi = avg points(a, b, ¢

Print the results

print("A: {8:.5fF} B: {1:.5f} C: {2:.5F}".format(a.result(), b.result(), c.result()))
print("Average: {0:.5f}".format(avg_pi.result(

tion into a dynamic

#parsl

A

/
O
(I
[

(oo
Lgo

amazon XSED

We b Se r V|CeS Extreme Science and Engineering

Discovery Environment

13

Parsl programs can be executed in different ways on
different systems

Cwmex L wenc { Flux ? “Exex | moon | funox | | e
: | Queue | ! o Oberiodls o L B
" [i Qe | Producton
o we () A& @] oo
e N i NS LE L . { oopcaes
Providers
[Slurm] [LSF] [GridEngine] [Kubernetes] [AWS]
[PBS] [Cobalt] [HTCondor] [Google] [Ad hoc]

14

Parsl executors scale to 2M
tasks/256K workers

HTEX and EXEX outperform other
Python-based approaches

Parsl scales to more than 250K
workers (8K nodes) and ~2M tasks

Pratiiswonl Maximum Maximum Maximum :
of workers'| # of nodes’| tasks/second*
Parsl-IPP 2048 64 330
Parsl-HTEX 65536 2048 1181
Parsl-EXEX 262 144 8192 1176
FireWorks 1024 32 4
Dask distributed 4096 128 2617

Babuiji et.al. "Parsl: Pervasive Parallel Programming in Python."
ACM International Symposium on High-Performance Parallel and

Distributed Computing (HPDC). 2019.

Completion time (s)

ompletion time (s)

Strong scaling (50K 1s tasks)

4

103

104 . IPP
. R = HTEX

103 SO ; EXEX

101_% ~~\\\ Dlask
] S ae FireWorks

10" -—- Ideal

_1:
10 —
10" 10° 10° 10° 10°
Number of workers
Weak scaling (10 1s tasks per worker)

10%5
HTEX

103 . EXEX
E IPP
i Dask
2]

10 FireWorks
] -=-=- |deal
1R B S-Nrev __ ________

1()()I Illll]ilbll Illlilbzl Illlilb3l Illll]ilb4l llllilb5

Number of workers

funcX: managed and federated Faa$S

¢ Using Parsl to manage remote (and multi-site) computation can be difficult
(e.g., persistent process, SSH connections, 2FA)

* Many Parsl programs have few (or no dependencies)
* Configuring Parsl for different systems can be complicated

* Can we build a simpler model for running tasks remotely?
— Cloud-hosted service offering fire-and-forget function execution
— Register and share FaaS compute endpoints
— Register and share Python functions
— Reliable, scalable, secure function execution on arbitrary remote endpoints

-
funcM

Try funcX: https://[funcx.org/binder

16

Transform laptops, clusters, clouds into function
serving endpoints

Python-based agent (p|p or Conda) S pip install funcx-endpoint
installable in user space

Elastically provisions resources from
local, cluster, kubernetes, or cloud system
(using Parsl)

Manages concurrent execution on
provisioned resources

Optionally manages execution in
containers

Share endpoints with collaborators

$ funcx-endpoint configure myep

$ funcx-endpoint start myep

17

Register and share functions
Create funcX client (and authenticate)

from funcx.sdk.client import FuncXClient

fxc = FuncXClient()

Define and register Python function

def hello world():
return "Hello World!"™

func_uuid = fxc.register_function(hello_world)
print(func_uuid)

oot JAER-SNTES roro) e |

£ ocomrata (inrart oreco) o

def compute (input args):
do something
return results

18

Execute tasks on any accessible endpoint

Select: function ID, endpoint ID, and input |
arguments q.\-

pyter
tutorial_endpoint = '4b116d3c-1703-4f8f-9f6f-38821e5864df" @

res = fxc.run(endpoint_id=tutorial_endpoint,
function_id=func_uuid,
argl, arg2, arg3)

Retrieve results asynchronously (funcX stores
results in the cloud)

print(fxc.get_result(res))

19

funcX scales to 100K+ workers

funcX endpoints deployed on ALCF Theta and NERSC Cori

Strong scaling (100K concurrent functions) shows good scaling up to 2K
containers even with short no-op/sleep tasks

Weak scaling (10 tasks per container) scales to 131K concurrent containers
(1.3M tasks)

1045

103 ;
1.3 ; 0]
o | 103
E g0
5 10% G]
c : = .
© . - no-op (Theta) o 1024
o] no-op (Cori) =]
2 104 1s sleep (Theta) a I
€7 : 1s sleep ideal € 1015
O 1min stress (Theta) S]
I 1min stress ideal "

T 1 1 L 1 e e B T
Number of containers Nuimher of containers

R. Chard et.al. "FuncX: A Federated Function Serving Fabric for Science."
ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC). 2020. 20

Automating the research lifecycle with the Globus
Automate platform and funcX

- Managed’ Secure’ and C%@HOWS“%;
reliable task orchestration s & e

A single Transfer Operation

a C rOSS h ete roge n O u S pruyne@globus.org p start

STEPS CREATED LAST MODIFIED KEYWORDS
1 2021-05-07 12:38 2021-05-07 12:38 Transfer,Example

re S O u rC e S Transfer Set Permissions ’ Start

rudyard@globus.org

= Declarative language for

2021-05-1114:41 2021-05-1114:45

composition =

STEPS CREATED LAST MODIFIED KEYWORDS

= Extensible custom actions -

2 Stage Transfer

8.
<
a
D
Q
o
S)
c
&
Q
%)

= Event-driven execution
Auth Style Transfer Describe Delete Search
CESEOOEES
=2 Ix RUURES W 7y
o\

GET STYLE TRANSFER GET CLEAN INGEST
CREDENTIALS IMAGE DATA METADATA UP

When should you use Parsl or funcX?

Parsl funcX

Workflows Bag of tasks

Single site One or more sites

High performance Fire-and-forget execution
Management of MPI apps Execution in containers

Integrated wide-area data Share functions and endpoints
management Automated, event-based computing

Parsl + funcX

Workflows executed remotely across one or
more sites

22

Agenda

Day 1 Day 2
9:00 am - Welcome! 1:00 pm - Session 3 (Chair: Yadu Babuji)

9:10 am - Intro to Parsl and funcX
2:15 pm - Tech Talk: Douglas Thain, Resource

9:30 am - Session 1 (Chair: Ben Clifford) Management for Dynamic Function Distribution

10:30 am - Tech talk: Zhuozhao Li, Parsl + funcX 2:30 pm - Break

10:45 am - Break 3:00 pm - Tech Talks: Ben Clifford, Ben Galewsky, and
Raf Vescovi

11:15 am - Session 2 (Chair: Dan Katz) 4:00 Session 4 (Chair: Ryan Chard)

12:15 - Parallel Works Tech Talks
5:00 pm - Closing

12:30 - Tech talk: Kir Nagaitsev, Asynchronous APls
in funcX

12:45 - Day 1 Closing
y https://parsl-project.org/parslfest2021.html

23

https://parsl-project.org/parslfest2021.html

Other functionality provided by Parsl

Resource abstraction. Block-based
model overlaying different providers
and resources

M Fault tolerance. Support for retries,
~ checkpointing, and memoization

M Multi site. Combining

executors/providers for execution
across different resources

Elasticity. Automated resource
- expansion/retraction based on
workload

////"/’
////"/,
////“/,

Monitoring. Workflow and resource
monitoring and visualization

b7

o

2

Jljpytér

Globus. Delegated authentication
and wide area data management

Data management. Automated
staging with HTTP, FTP, and Globus

Containers. Sandboxed execution
environments for workers and tasks

Jupyter integration. Seamless
description and management of
workflows

Reproducibility. Capture workflow
provenance in the task graph

25

Introducing the team(s)

Rachana Ananthakrishnan Dan Katz

Yadu Babuiji Zhuozhao Li

Ben Blaiszik Uriel Mandujano
Josh Bryan Kir Nagaitsev
Kyle Chard Stephen Rosen
Ryan Chard Tyler Skluzacek
Ben Clifford Logan Ward

lan Foster Mike Wilde

Ben Galewsky Anna Woodard

26

Expressing parallelism using Parsl

1) Wrap the science applications as Parsl Apps:
@bash app
def (outputs=1[]) :
'./simulation app.exe {outputs[0]}’

@python app
def (inputs=1[]) :
analysis package (inputs)

@bash app
def (inputs=[], outputs=I[]):
1 = 1nputs; o = outputs
'./merge {1} {0}'.format(' '.join(i), ol[0])

Expressing a many task workflow in Parsl

2) Execute the parallel workflow by calling Apps:

sims = []

for 1 in range (nsims):
sims.append(simulate (outputs=['sim-%s.txt' % 1]))

all = merge (inputs=[i.outputs[0] for i1 in sims],
outputs=['all.txt'])

T~

result = analyze (inputs=[all.outputs[0]])

FuncX: a federated function serving ecosystem for research

|
. | Reglster repo2docker I
En Ints:

dpoints Execution '

— User-deployed and managed f(x), .. g(x)

|
— Dynamically provision resources, deploy containers, and execute [1,2,3 ... n]
functions

— Exploit local architecture/accelerators

funcX Service:

— Single reliable cloud interface
— Register and share endpoints

— Register, share, run functions

Choose where to execute functions

— Closest, cheapest, fastest, accelerators ...

o
ES
1

Density (%)
o
N
1

o
o

0.70 0.75 1 75 1. 80 1.852.00 205 210 5 6 50 55
Latency (s)
(a) tabular file (b) MNIST digit (c) DIALS stills (d) tomographic (e) correlation

extraction prediction process preview spectroscopy 29

Parallel applications require different execution models

High-throughput workloads
— Protein docking, image processing, materials reconstructions

— Requirements: 1000s of tasks, 100s of nodes, days of execution, reliability,
usability, monitoring, elasticity, etc.

Extreme-scale workloads
— Cosmology simulations, imaging the arctic, genomics analysis

— Requirements: millions of tasks, 1000s of nodes (100,000s cores), days of
execution, capacity

Interactive and real-time workloads
— Materials science, cosmic ray shower analysis, machine learning inference
— Requirements: 10s of nodes, seconds-minutes, rapid response, pipelining

30

Parsl implements a modular executor interface

High-throughput executor (HTEX)
— Pilot job-based model with multi-threaded manager deployed on workers
— Designed for ease of use, fault-tolerance, etc.
— <2000 nodes (~60K workers), Ms tasks, task duration/nodes > 0.01

Extreme-scale executor (EXEX)*

— Distributed MPI job manages execution. Manager rank communicates
workload to other worker ranks directly

— Designed for extreme scale execution on supercomputers
— >1000 nodes (>30K workers), Ms tasks, >1m task duration

Low-latency Executor (LLEX)*
— Direct socket communication to workers, fixed resource pool, limited features
— 10s nodes, <1M tasks, <1m tasks

Others: WorkQueue and IPyParallel

31

Parsl scripts are execution provider independent

B Configuration

The same script can be run locally, on grids, clouds, or How-to Configure
supercomputers Comet (SDSC)
Cori (NERSC)

Stampede2 (TACC)

Growing support for various schedulers and cloud vendors

Theta (ALCF)
Cooley (ALCF)

Swan (Cray)

CC-IN2P3

Midway (RCC, UChicago)
Open Science Grid
Amazon Web Services

Ad-Hoc Clusters

Further help

32

Separation of code and execution

sample_configs.py E] runner.py

... imports import parsl
import os

threads_config = Config(from sample_configs import threads_config, cori_config

executors=[ThreadPoolExecutor()]
) if os.environ.get('PIPELINE_ENV', 'test'):
. . . parsl.load(threads_config)
corl_config = ionflg(Sk
executors= . :
HighThroughputExecutor (R R)
label="Cori_HTEX_multinode',

. #... rest of the pi
provider=SlurmProvider (PSR

'debug', # Partition / QOS

nodes_per_block=2, . .

a1 e NG ELGN, Choose execution environment

I ——c— at runtime. Parsl will direct
tasks to the configured

))
execution environment(s).

1

s=Parsl Wo

Monito I'i ng Workflows

a n d Name Version Owner Status Runtime (s) Tasks Actions
o o N test_udp_simple.py 2019-02-20 22:16:43.570094 zhuozhao Completed 25.218577 @ El]
VI S u a l] Zatl o n test_fan_in_out.py 2019-02-20 22:20:24.918435 zhuozhao Completed 151.207859 @ E| Lt
test_monitoring.py 2019-02-20 22:23:16.632888 zhuozhao Completed 121.393285 El C|
test_fan_in_outpy 2019-02-20 22:27:05.407903 zhuozhao Completed 151.513495 @ |E| Lt
test_fan_in_out.py inc (1)
Workflow Summary App Summary
o SRR P0IB 002 220 H G 18435 — p— « Workflow name: test_fan_in_out.py Task State
« Completed: 2019-02-20 22:22:56.126294 « Started: 2019-02-20 22:20:24.918435 3
+ Completion time: 151.207859 s add_inc 2 « Completed: 2019-02-20 22:22:56.126294 Time State
« Owner: zhuozhao 3 TR R
« HosE a2 IBgi 25 e 10 : 8;':"'_“':" "hme‘ EPLRSo0s 2019-02-20 22:20:25.128896 launched
 rundir: | 001 er: zhuozhao
« tasks_failed_count: 0 * task_func_name: inc 2019-02-20 22:20:25.236034 running
« tasks_completed_count: 12 e task id: 1
« task_time_submitted: 2019-02-20 22:20:25.112977 2019-02-20 22:21:15.349689 done
View workflow resource usage

« task_time_returned: 2019-02-20 22:21:15.349654
« task_inputs: None
« task_outputs: None

w im 6m YD 1 1] i
w im 6m y [al « task_stdin: None

== Quauing « task_stdout: None
—— Running
1 E—
10 T
3 CPU utilization Memory Usage
——)
8 -
7 E—————
e 100
3 o EE—— g 05
c
s —_— s 5
4 g g oss
s 50 [
3 > 04
:
2 £
2 035
1 o
0 — H 02-20 0220 0220 M 02-20 0220 02-20 0220
O r OW V I eW 22:20:30 22:20:40 2212050 a S V I eW 222030 222040 222050 22:21:00
22:20:30 22:23:00 i
Feb 20, 2019 Time Time
e
Time

Parsl is being used in a wide range of scientific applications

A

© ® ®m © 0 ®

Machine learning to predict
stopping power in materials

Protein and biomolecule
structure and interaction

LSST simulation and weak
lensing using sky surveys

Cosmic ray showers in
QuarkNet

Information extraction to
classify image types in papers

Materials science at the
Advanced Photon Source

Machine learning and data
analytics in materials

Red indicates higher statistical
confidence in data

35

HPC and science education using Parsl

HPC and Samoan Fire
Knife Dancing, What
Could Go Wrong?

Ben Glick shares a rich undergraduate experience
that ranges from building an HPC system to
dancing with fire.

Posted by @vsoch - 1 min read

wi
Dnew ¥ roenally HIC Acrom

L
e e

http://us-rse.org/rse-stories/2020/ben-glick/

Z Jupyter 5_Flux_script (unsaved changes)
Fle Edt View Inset Cel Kemel \idgets Help

B+ 3@ B4 ¥| MR B C|» Makdon v |2

(remember, wc -1 returns a count of the number of lines in the file). These |
them.

- The Parsl Flux App

For we'l wrap the UNIX the Flux.pl scriptin a Parsl App, which will make it easier to work with from within the

Jupyter Notebook environment

ig
ads import ThreadPoolExecutor
rt bash_app, python_app

from parsl import File

- conf

ig(
=[ThreadPoolExecutor()],
ue

)
pars1.load(config)

In[]: #Th

@bas
+ def Flux(inputs=[], outputs=[], binWidth-"600', geoDir='geo/’, stdout='stdout.txt’, stderrs’stderr.txt'):
return ‘perl ./perl/Flux.pl %s %s %s %s' % (inputs[e], outputs[e], binkidth, geoDir)

Edit stuf below to use the App

https://quarknet.org/content/about-e-labs

36

http://us-rse.org/rse-stories/2020/ben-glick/
https://quarknet.org/content/about-e-labs

Building on Parsl to create specialized scientific applications and services

2

QC Archive

A MolSSI| Project

QCArchive

Compile, aggregate,
query, and share
quantum chemistry data
on diverse systems

COI Intonsity Predicted Structure
(via DLHuD)

Data and Learning Hub
for Science (DLHub)
Interactive execution of
user-provided machine
learning models in
real-time

O
g
|
I
O
o
]
(=)

i v

' Columnar Hm]]ﬂn

| Analysis

Coffea: Column Object
Framework for
Effective Analysis
Back-end-agnostic data
processing libraries for
granular event-based
HEP analysis

37

Function as a Service (Faa$)

Serverless: Cloud provider provisions and manages all
infrastructure

def compute (input args):

FaaS: Developers work in terms of progry ~ # do something

. . return results
1. Pick a runtime (e.g., Python)
2. Register function code

3. Run (and scale) @
Low latency, on-demand, elastic scalin I d
update

The COVID’ 19 data pipeline: Using Al and supercomputers to accelerate drug development

CHEMICAL
LIBRARY DATABASE

4

known
molecules

DB GDB
eMolecules’

cureFFI MOSES

ZINC15
L': LINCS

C, SureChEMBL

Pub(Clhem

AND MORE

CANONICALIZATION
;

AN E >
c
| £ Y
[}

7

COMPUTE FEATURES

0
Xz

Ad

\I FINGERPRINTING

SIMILARITY SEARCH

Hash Fingerprint Hash Fingerprint

GENERATE IMAGES

o

e e ey

CNN FILTERING
Q@ &)

-
& L4
@

&

DEEP LEARNING

COMPUTING
RESOURCES

FILTERING

&

39

Research Automation: Serial Crystallography

AR
BN 1mage

| Ry N | processing
k. Siaold J

Data capture

funcX Transfer funcX

QA Transfer -
Process Threshold data AUEVZEMN Gonerate
crystal

map

High quality FAIR data

Transfer

Return
results

Publish Index

I Q

Publish
results

Catalog Visualize

40

Data and Learning Hub for Science (DLHub)

Model Library Models Data Sources
Publish Depl Train .
g —Deploy_, O¥?518’-ﬁ"o LY Data Stores =
-, Jhgaat <_Save OOO Predict \ H
A OO Ratatal s
Query | Publish ,' Databases, MDF, Other gc |
: & 7 APIs L.
(00 (Q\'
| C 70
A Aggregate_ _ _ _ p
Data Streams

Manufacturing and machine learning

Flame spray
pyrolysis, MERF

4 The Manufacturing and
(MDML)

ey

ML platform \

"
.

o .
o =
——— L

e

influxdb)

1. Instrument sensors
stream data to the

Grafana Real-Time Dashboards

2. Use FaaS to analyze
data on-demand

MDML

3. FaaS tasks distributed
across the computing continuum

4. Results are used
to guide the

Compute and storage continuum

experiment

42

Lessons learned applying funcX to science use cases

SSXSXSXKXKX

O O 0o O &8

Abstracts the complexity of using diverse compute resources
Simplicity: automatic scaling, single interface

Flexible web-based authentication model

Enables event-based processing and automated pipelines
Increases portability between sites, systems, etc.

Resources can be used efficiently and opportunistically
Enables secure function/endpoint sharing with collaborators

FaaS is not suitable for some applications

Ratio of data size to compute must be reasonable

Containerization does not always provide entirely portable codes
Coarse allocation models do not map well to fine grain/short functions
Decomposing applications isn’t always easy (or possible)

43

FaaS as offered by cloud providers

Cloud provider 1

Cloud provider 2 .

Single provider, single
location to submit and
manage tasks

Homogenous execution
environment

Transparent and elastic
execution

Integrated with cloud
provider data
management

44

Faa$S as an interface to the distributed computing ecosystem

We still want

Single interface

Homogenous execution
environment

Transparent and elastic
execution

Integrated with data
management

45

