
Solving Hierarchal Neuroscience Problems With Parsl
Matthew Madany, madany@ucsd.edu

mailto:madany@ucsd.edu

Volume Electron Microscopy A.I. Applications

Challenges in Application Design
• Defining A parallelization scheme For efficient GPU and

CPU utility
• Defining a data structure scheme that is scalable and

portable

Labeled Volume Data from Brain Images

Cerebellum
Cortex

Hippocampus

X

Y

Factor 3D volume into 3D windows

Design Criterion:
3D volume has to be factored into windows (tensors) compatible to GPU specs, while
this process must also compress and store data compatible to storage location,
(balancing shared filesystem capacity, node storage capacity, compression, inodes)

Scalable Volume ML/GPU Applications must therefore define:
Workers to import and format data, workers to port this data through GPUs, workers
to compile outputs back to original volume while dealing with complex
multidimensional processing pipelines that wrap around simplified machine-learning
experiments.

Solution: Combine a parallel execution engine with a concurrent data structure scheme

Build tensor processing applications in
parsl apps which can port into any kind
of local, cloud, or supercomputer
application

Define data concurrency and
compression schemes that are
compatible with the parsl app
and A.I. workflow

Building Scalable volumetric A.I. applications becomes much easier

Data achieves very high dimensionalities and efficiencies
Dataset x Batch x Channels x Z-Depth x X-Dimension x Y-Dimension x Tensor-iteration

Configuration options passed to Parsl and z5py will naturally load-balance these needs:
- Efficiency in GPU/CPU processing
- Wrangling large data into deep learning frameworks
- Easy design of high-dimensionality processing pipelines
- Data compression cost and benefit
- Porting of applications to heterogonous node definitions

Altogether enable the testing of applications at scale that we wouldn’t normally even
consider building in the first-place due to parallelization challenges.

Data File Dataset Data Chunks

Train Infer
A.I.

Application

Upsampling Pool

Layers: 2

Type: Transposed 3D Convolution

Input Filters: 96

Output Filters: 384

Kernel: 3x3x3

Stride: 2x2x2

Input Layer

Layers: 1

Type: 3D Convolution

Filters: 96

Kernel: 3x7x7

Stride: 2x2x2

Body

Layers: 6

Type: 3D Resnet Blocks

Filters: 384

Kernel: 3x3x3

Stride: 2x2x2

Downsampling Pool

Layers: 2

Type: Transposed 3D Convolution

Input Filters: 384

Output Filters: 96

Kernel: 3x3x3

Stride: 2x2x2

Output Layer

Layers: 1

Type: 3D Convolution

Filters: 96

Kernel: 3x7x7

Stride: 2x2x2

Generator

Convolution Pool 1

Layers: 2

Type: 3D Convolution

Filters: 168

Kernel: 3x3x3

Stride: 2x2x2

Input Layer

Layers: 1

Type: 3D Convolution

Filters: 84

Kernel: 3x3x3

Stride: 2x2x2

Convolution Pool 2

Layers: 2

Type: 3D Convolution

Filters: 336

Kernel: 3x3x3

Stride: 2x2x2

Output Layer

Layers: 1

Type: 3D Convolution

Filters: 84

Kernel: 3x3x3

Stride: 2x2x2

Discriminator

Set A Tensor

Set B Tensor

Training Preprocess
Z nm

Z nm

Z

2

Z

2

nm

nm

G-D Pair A

G-D Pair B

Step 1

Step 1

Step 2

Step 3

Step 3

Step 4

Step 4

Step 2

Set A

Set B

Objective Pairs

Step 2

Step 3

Step 4

Blank Upsampling

Generator B

Resolved

Original

Rolling 3D Window

Inference

Scaffold

Random 3D Tile

Extraction

Training Setup

Electron Microscopy Superresolution

Examples of Applications

Superresolution

MultiLabel Voxel Classification
Content-Aware Image Restoration

Microscopy Domain
Translation

Examples of Reconstructions, Analyses, and
Composable Workflows

Performance

GPU

CPU / Mem

