CDAC

Diving for Treasure in a Sea of Scientific Literature
Extracting Scientific Information from Free Text Articles

Aarthi Koripelly
Kyle Chard (Advisor)
Zhi Hong (Advisor)

CDAC

Dataset Distribution

1584

= = =
o N N
o o (=3
o o o

o]
o
o

Number of Sentences
Number of Sentences

1331]
1253
1137 a
974
248
923 e .
732
I | -
! ' r : : - I No Relation Polymer Name-Tg Value Polymer Name-

Other Cause- Component- Ent'ity- Enfity— Producer- Member- Message- Content- Instrument-
Effect Whole Destination Origin Producer Collection Topic Container Agency Polymer Acronym/LabeI

Relation Type Relation Type

CDAC

Dataset Distribution

Noun Data Polymer Data

* The dataset was provided by SemEval Task 8 * The dataset was provided by

+ 8000 training sentences, 2717 testing Macromolecules journal
sentences, each labelled with entities, and the * 114 sentences, each labelled with entities,
relation type. and the relation type.

Example: * and ' Example: *

Cause-Effect Relationship “and '’

Polymer Name and Label Relationship

What is a Dependency Parser? =

Extracts relationships between words based on parts of speech and semantic relationships

dahj

|
poss. pohi pohi
* det] * nsubj | | * amod |u| prep + | ‘ det | prep + | tompoundi
The system has its greatest application in a configuration of antenna elements.
DET NOUN AUX DET ADJ NOUN ADP DET NOUN ADP PROPN NOUN

Named Entity
Tagger: Extracts -

. ..

relationships between
words based on word

type (person, place, o

location, etc)

CDAC

spaCy NLP Pipeline

CDAC

INPUT SENTENCE: 'The system as described above has its
greatest application in an arrayed configuration of antenna
elements .’

OUTPUT: [('configuration’, 'Whole', 12), (‘elements’, '‘Component’,
15)]

CDAC

Customizations - Tokenizer and Word Embedding

Original Sentence: The glass-to-rubber transition of
poly (BC-co-BS) copolymers was investigated by DSC
on melt quenched samples.

Default Tokenizer:

(The, glass, -, to, -, rubber, transition, of, poly, (,
BC, -, co, -, BS,), copolymers, was, investigated,
by, DSC, on, melt, quenched, samples, .)

Custom Tokenizer:

(The, glass-to-rubber, transition, of, poly, (,
BC-co-BS,), copolymers, was, investigated, by,
DSC, on, melt, guenched, samples, .)

Input Projection Output Input Projection Output

W(t-2)

W(t-1)

W(t+1)

W(t+2)

W(t-2)

W(t-1)

(t+1)

W(t+2)

CDAC

Scaling the pipeline

e Our models identify relations in fragments of text
e There are millions of papers to be processed

= Scale by slicing the data and parallelizing across cores and
nodes (with Parsl)

e RCC Midway Cluster

import parsl

import time

import os

from parsl.app.app import python_app, bash_app
from parsl.providers import SlurmProvider

from parsl.launchers import SrunLauncher

from parsl.addresses import address_by_hostname
from parsl.executors import HighThroughputExecutor
from parsl.config import Config

@python_app

def generate(string):
from datetime import datetime
import spacy
tic = datetime.now()
nlp = spacy.load("./nlp_model")
result = []
docs = nlp(string)
result.append([(t.text, t.dep_, t.idx) for t in docs if t.dep_ !=
!= "ROOT"])
toc = datetime.now()
return tic, toc, result

and t.dep_

num_nodes = 1

num_cores_per_node = 32

config = Config(
executors=[

HighThroughputExecutor(
label='Midway_HTEX"',
worker_debug=False,
address=address_by_hostname(),
cores_per_worker=1,
max_workers=num_cores_per_node,
provider=SlurmProvider(

‘gmé’,

launcher=SrunLauncher(),
nodes_per_block=num_nodes,
cores_per_node=num_cores_per_node,
init_blocks=1,

max_block ,

exclusive=False,
scheduler_options='#SBATCH --qos=gm4-cpu',
worker_init='source activate freetext',
walltime='12:00:00"

import pandas as pd
df = pd.read_table('./polymer.txt', delim_whitespace=False, names=('A')) #reading
training data
data = [_ for _ in df['A']]
untoken = []
for sent in data:
delta ent.split()

string
for i in delta:

string = string + i +
untoken.append(string)

Wait for all apps to finish and collect the results
out = list()
for i in untoken:

out.append(generate(i))

tics, tocs, outputs = list(), list(), list()
for i in out:
tic, toc, result = i.result()
tics.append(tic)
tocs.append(toc)
outputs.append(result)

Print results

with open("nodesl_results.txt", "w") as result:
result.write(str(outputs))
result.write(str(max(tocs) - max(tics)))

parsl.load(config)

w
°
c
o
o
Q
]
n
O
=
>
c
=

Run-Time on CPU

u
8 Runtlmes for Different Hyperparameters

Performance

Performance over 15 epochs
for Skipgram and CBOW with
default hyperparameters for
Model 3

Minutes:Seconds

23

Run-Time on GPU

Performance Over 15 Epochs for CBOW

o ° ° °
S & =

Performance

b
b

8

EEp7ochs

9 10 11 12 13

1# 15

CDAC

CPU vs GPU

Used Model 3 and default
CBOW parameters

spaCy not optimized for GPU
acceleration

Fastest CPU runtime for
training is 23 minutes

Performance Over 15 Epochs for Skip-gram

o)
O
c
©
£
_
o

b o
o

a

8 9 10 11 12 13 14 15

6Ep7ochs

CDAC

Parsl Scaling

Per Core Scaling Per Node Scaling

=

Number of Nodes

Time in Minutes
Time in Minutes

=

Number of Cores per Node

CDAC

Conclusion

Spacy % ChemDataExtractor

