
Advancing the Search for
Dark Energy with Parsl and

HPC
Tom Glanzman - SLAC National Accelerator Laboratory

glanzman@stanford.edu

 in close collaboration with Ben Clifford who adapted an existing DESC workflow to Parsl
and continues to partner in this endeavor

mailto:glanzman@stanford.edu

T.Glanzman Parslfest 6 Oct 2020

The Rubin and DESC Projects

● Vera C. Rubin Observatory [formerly LSST] (DOE+NSF)
○ Sited on a mountain top (Cerro Pachon) in Chile
○ 8.3 meter diameter primary mirror
○ WIDE field of view (10x10 degrees)
○ Worlds largest digital camera (3.2 Gpixels)
○ Begin operation ~2022-3 with 10-year whole-sky

survey program

● What is Dark Energy?
○ “Dark energy is the name given to the mysterious force that’s causing the rate of expansion of

our universe to accelerate over time, rather than to slow down.” [ref]

● Dark Energy Science Collaboration (DOE)
○ >1000 scientist collaboration started in 2012
○ Exploit Rubin data to study clues to dark energy

https://earthsky.org/space/definition-what-is-dark-energy

T.Glanzman Parslfest 6 Oct 2020

Mountain top observatory (Chile)

Grinding the 8.3m lens
(Steward Observatory, Tucson, AZ)

Telescope mount (Spain)

Photos courtesy of Rubin Observatory, LSST Project/NSF/AURA

T.Glanzman Parslfest 6 Oct 2020

● Camera focal plane
● 189 science sensors (4k x 4k pixels)
● 12 special purpose sensors (focus,pointing)

Final raft of sensors being
installed: January 2020

Photos courtesy of Rubin Camera Team

T.Glanzman Parslfest 6 Oct 2020

The DESC Data Challenges
● No data yet! (Not until ~2022-3)
● Must hit the ground running. Therefore,

○ simulate (part of) the sky,
○ exercise the LSST project (DM) software to convert raw images into catalogs,
○ develop and test DESC-specific algorithms on the result.

● Data Challenge 2 (DC2)
○ ~300 sq. degrees of the sky (about 0.7% of entire sky)
○ 5 years of observation (one-half the Rubin survey program)

● Computational steps involved (simplified):

● Natural parallelization: images(exposures),sensors,patches of sky, etc.
● DC2 generates >1PB of data and consumes 10’s of millions of CPU hours
● DOE has provided cycles at NERSC and ALCF to support this work
● Image simulation step managed by Parsl at NERSC & ALCF

(and presented at last year’s Parslfest)

Sim catalog
generation

Image
simulation

Image
processing

Observation
catalog
generation

Subject of this talk

https://drive.google.com/file/d/1rV9bqxr4LNsTyXlavZah4jy7qSa1is-9/view

T.Glanzman Parslfest 6 Oct 2020

Parsl @NERSC

● Cori-KNL (primary HPC machine at NERSC)
○ 9,688 nodes each with 68 cores x 4 hardware threads
○ Modest clock speed 1.4 GHz
○ 96 GB memory per node

● Storage = GPFS ($HOME) + Lustre ($SCRATCH)
● Batch access via SLURM
● Challenges:

○ Relatively little memory/core (or hyperthread), ~1.5 GB/core
○ Disk I/O can be problematic, slow, erratic
○ SLURM queue often experiences very large dispatch latencies (hours to days), even for

small jobs which can be a problem for development and production throughput
○ Rubin/LSST codes are single-threaded

T.Glanzman Parslfest 6 Oct 2020

Data Release Pipeline (DRP) à la Parsl

DRP consists of Rubin DM project
algorithms (python/C++) representing all of
the processing from raw camera images to
catalogs of sky objects.

The primary Parsl apps used in this
workflow.

Using multiple HTEX executors to match
tasks to needed resources.

Task name (parsl app) Executor Instances
(est.)

make_tract_list batch-2 1

make_patch_list_for_tract batch-2 173

visits_for_tract_patch_filter batch-2 43,506

coadd_parsl_driver local 43,506

make_coadd_temp_exp batch-3 360,595

assemble_coadd batch-4 43,008

detect_coadd_sources batch-4 43,008

multiband_parsl_driver local 50,568

merge_coadd_detections batch-4 8,428

deblend_coadd_sources batch-4 50,568

measure_coadd_sources batch-5 50,568

merge_coadd_measurements batch-4 8,428

forced_phot_coadd batch-5 50,568

Executor # nodes/block # workers/node Clock limit

batch-2 1 200 9:00:00

batch-3 400 22 10:00:00

batch-4 50 20 10:00:00

batch-5 100 50 24:00:00

T.Glanzman Parslfest 6 Oct 2020

wstat - workflow status reporting tool
● A python script to read and interpret Parsl’s monitoring.db
● Produce various (text-based) reports and plots.
● General tool -- not tied to any specific workflow
● Tabular reports including all runs, all tasks, full task history, etc.
● Full references to log files
● Example reports in the Backup Slides
● Very much a work in progress - if there is interest, contact me for github info

Example execution timing histogram

Workflow summary at 2020-10-02 07:59:01.909485
==
+--------------------------+--+
workflow name	DRPtest
run	001 <<-most current run->>
run start	2020-09-27 10:22:05
run end	*pending*
run duration	*pending*
tasks completed	3
tasks completed: success	3
tasks completed: failed	0
workflow user	descdm@cori20
workflow rundir	/global/cscratch1/sd/descdm/ParslRun/dr2
MonitorDB	./monitoring.db
+--------------------------+--+

Report Header

T.Glanzman Parslfest 6 Oct 2020

Parsl Wish List
● Ability to “roll back” selected task(s) within workflow

○ To expedite development of both the workflow and its component tasks
○ In production to surgically redo selected task - and it’s downstream dependencies

● Improved executor with better control over task assignment to batch nodes
○ Do not start task requiring 3 hours on a batch node with only 1 hour left
○ Do not start task requiring 4 GB of memory on node with only 1 GB remaining
○ Flexibility to request #nodes/job according to task backlog
○ (User must specify these limits!)

● Monitoring
○ Extend “monitoring” to all executors

■ Very difficult to collect performance statistics without monitoring data
○ Make monitoring data reliable

■ Data are lost! For example, runtime (task_time_running)
○ Better accounting of batch jobs

■ For calculating efficiency, need record of #idle workers vs time, data for tasks that fail
due to batch job running out of time (ref github issue #1658)

○ Record task failure codes (return codes or time-out or crash or …) (ref issue #1453)

● Command/Control communication with running workflow
○ E.g., refresh executor parameters or other config without usual {^c, edit, restart} cycle

● Support for application-level checkpointing, e.g., dmtcp
○ Long-running, or batch time-outs can be restarted for better efficiency

https://github.com/Parsl/parsl/issues/1658
https://github.com/Parsl/parsl/issues/1453

T.Glanzman Parslfest 6 Oct 2020

Backup Slides
(intended to be viewed full screen)

T.Glanzman Parslfest 6 Oct 2020

wstat - Workflow STATus

wstat is a very basic text-oriented report generator using data from the Parsl
monitoring.db. These reports are intended to provide a quick overall status of a
running (or completed) workflow.

Obviously, monitoring must be enabled for this to work. Currently, only the HTEX
(high-throughput executor) supports monitoring 😞.

You are welcome to take wstat out for a spin.

Github repo: https://github.com/TomGlanzman/Perp

Caveats:

● Work in progress - some features may not quite work right: consider this a
prototype tool

● Plot function is at a very early stage of development
● You may encounter extraneous debug statements
● Monitoring.db schema can change - and foul up the SQL in wstat

https://parsl.readthedocs.io/en/stable/userguide/monitoring.html?highlight=monitoring#monitoring-configuration
https://github.com/TomGlanzman/Perp

T.Glanzman Parslfest 6 Oct 2020

wstat “help” - listing reports and options

Report types

Various options
(mostly to limit
output)

T.Glanzman Parslfest 6 Oct 2020

wstat -- “shortSummary” example

Header

List of nodes currently
running - and the number of
tasks running on each

Statistics for all
tasks for each
Parsl “state”

T.Glanzman Parslfest 6 Oct 2020

wstat - “taskSummary” example

Header

Report consisting of
every failed task

Useful information for
investigating problems

Including location of logs

T.Glanzman Parslfest 6 Oct 2020

wstat - “tasksHistory” example

Full history of this task’s
attempt to run through
Parsl

Report consisting of full
history for a specific task

Header

T.Glanzman Parslfest 6 Oct 2020

wstat - “runHistory” example

