
TaPS: A Performance Evaluation Suite
for Task-based Execution Frameworks
J. Gregory Pauloski,∗† Valerie Hayot-Sasson,∗† Maxime Gonthier,∗† Nathaniel
Hudson,∗† Haochen Pan,∗ Sicheng Zhou,∗ Ian Foster,∗† and Kyle Chard∗

∗University of Chicago, †Argonne National Laboratory
27 September 2024 — Chicago, IL

➔ Applications automate computational processes to achieve a scientific goal
◆ Designed as compositions of discrete tasks

◆ Built/executed using a task executor (like Parsl or Globus Compute)

➔ Diverse ecosystem of task executor frameworks
◆ Each with different strengths and weaknesses

◆ Many open challenges to work on

2

Modern Science Applications are Task-centric

http://progress_bar_id

Task Execution Frameworks
Manage the execution of tasks in parallel across arbitrary hardware.

3

Workflow Management Systems
Define, manage, and execute workflows represented by a directed acyclic

graph (DAG) of tasks

Concurrent Executors
On-demand asynchronous

execution of tasks

Explicit
DAG defined via configuration file

or domain specific language

Implicit
Task dependencies derived through

dynamic evaluation of a procedural script

How do we benchmark
and compare Python

execution frameworks?

http://progress_bar_id

The Status Quo

Ad Hoc Benchmarks

● Framework-specific examples/demos
● Custom, single-use evaluation scripts

for a publication
● Forks of real science applications

Problems

● Code is framework-specific
● Ad-hoc scripts subject to code rot
● Porting applications can be onerous
● Subtle errors in ported applications can

lead to inaccurate comparisons

Prior work focused on simulations and synthetic workloads

4

http://progress_bar_id

TaPS: Task Performance Suite
A standardized framework for evaluating

task execution frameworks with real scientific workloads

5

http://progress_bar_id

Goals

➔ Provide reference/standard applications for benchmarking workloads

➔ Benchmark task executors / data management systems

➔ Robust and reproducible configuration system

6

http://progress_bar_id

Architecture

7

https://taps.proxystore.dev/latest/api/

Choose Plugins to
Benchmark

Executor Filter +
Transformer

Record
Logger

Da
sk

G
lo

bu
s

Co
m

pu
te

Ta
sk

Vi
ne

Pa
rs

l

Fi
le

Pr
ox

yS
to

re

Ra
y

JS
O

N

. .
 .

. .
 .

Pl
ug

in
s

Glue between Apps
and System Plugins

Engine

Fr
am

ew
or

k

Benchmarking
Workloads AppConfig

Application Benchmark

AppAp
pl

ic
at

io
n

https://taps.proxystore.dev/latest/api/
http://progress_bar_id

Applications: Benchmarking Workloads

8

https://taps.proxystore.dev/latest/apps/

➔ Six Real Apps

➔ Two Synthetic

➔ Diverse Patterns

➔ Diverse Domains

➔ Per-App Guides

➔ Add your own!

Type Name Domain Task Type(s) Data Type(s)

Real

cholesky Linear Algebra Python In-memory
docking Drug Discovery Executable, Python File
fedlearn Machine Learning Python In-memory
mapreduce Text Analysis Python File, In-memory
moldesign Molecular Design Python In-memory
montage Astronomy Executable File

Synthetic
synthetic — Python In-memory
failures — Depends on base app Depends on base app

https://taps.proxystore.dev/latest/apps/
http://progress_bar_id

Engine Plugins: Things You Can Compare

9

Task Execution Data Management

Purpose Asynchronously execute
functions

Manage task data by filtering and
transforming data into/resolve data
from intermediate representations

Interfaces Executor* Filter + Transformer

Out-of-the-Box
Implementations

ThreadPool, ProcessPool,
Dask, Globus Compute,
Parsl, Ray, TaskVine

Shared File Systems
ProxyStore (DAOS, Globus Transfer,

Margo, Redis, UCX, ZMQ, …)

*Requires implicit data flow support via futures. Wrapper provided for implementations that lack this feature.

Check out taps.proxystore.dev/latest/guides to add new apps/plugins!

http://progress_bar_id

Using TaPS

10

https://taps.proxystore.dev/latest/guides/config/

$ python -m taps.run \
 --app cholesky --app.matrix-size 10000 --app.block-size 1000 \
 --engine.executor parsl-local --engine.executor.workers 16 \
 --engine.transformer proxystore {transformer options} \
 --engine.filter object-size {filter options} \
 ...

[Output Truncated]
RUN (taps.run) :: Runtime directory: runs/cholesky-dask-2024-09-19-12-00-00
APP (taps.apps.cholesky) :: Generated input matrix: (10000, 10000)
APP (taps.apps.cholesky) :: Block size: 1000
APP (taps.apps.cholesky) :: Output matrix: (10000, 10000)
RUN (taps.run) :: Finished app (name=cholesky, runtime=13.18s)

Execute benchmarks with CLI or programmatically via API

+ runs
 ├─ cholesky-dask-2024-09-19-11-00-00
 └─ cholesky-dask-2024-09-19-12-00-00
 ├─ config.toml
 ├─ log.txt
 └─ tasks.jsonl

Run directory:
➔ Logs for analysis
➔ Config for

reproducibility
➔ Application outputs

[app]
name = "cholesky"
matrix_size = 10000
block_size = 1000

[engine.executor]
name = "dask"
workers = 16

[engine.filter]
name = "object-size"
min_size: 1000

[engine.transformer]
name = "proxystore"
cache_size = 16
extract_target = true
populate_target = true
...

[logging]
level = "INFO"
file_level = "INFO"
file_name = "log.txt"

[run]
dir_format = "runs/{name}-{executor}-{timestamp}"

python -m taps.run --config config.toml

https://taps.proxystore.dev/latest/guides/config/
http://progress_bar_id

Application Makespan

https://github.com/proxystore/escience24-taps-analysis

➔ No stand-out executor
➔ Diverse characteristics

across ref. applications
➔ Highlight strengths and

weaknesses across
executor frameworks

➔ High-level investigation
raises interesting
questions

*Task data exceeds Globus Compute 10 MB payload limit.

* *

*

11

https://github.com/proxystore/escience24-taps-analysis
http://progress_bar_id

Read the Paper!

12

Want to collaborate? Reach out if you have…
➔ an app that could be a benchmark
➔ a new execution framework
➔ a data management system
➔ and more!

Evaluation Exploration |

Try out TaPS

taps.proxystore.dev

Good stuff to read in here ☝
➔ more evaluation
➔ app descriptions
➔ technical details
➔ and more!

http://progress_bar_id

Questions?
Contact:
jgpauloski@uchicago.edu
github.com/proxystore/taps/issues

Reference:
https://github.com/proxystore/taps
https://taps.proxystore.dev

Acknowledgements:
● Argonne National Laboratory under U.S.

Department of Energy Contract
DE-AC02-06CH1135

● National Science Foundation under
Grant 2004894 and Grant 2209919

● Chameleon Cloud testbed supported by
the National Science Foundation

● Cooperative Computing Lab at the
University of Notre Dame

A Performance Evaluation Suite for
Task-based Execution Frameworks

TaPS

J. Gregory
Pauloski

Valerie
Hayot-Sasson

Maxime
Gonthier

Nathaniel
Hudson

Haochen
Pan

Sicheng
Zhou

Ian
Foster

Kyle
Chard

github.com/proxystore/taps

GitHub

arxiv.org/abs/2408.07236

Preprint

gregpauloski.com/#presentations

Slides

13

https://github.com/proxystore/taps
https://arxiv.org/abs/2408.07236
https://gregpauloski.com/#presentations
http://progress_bar_id

