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Todo: if try 0 fails OR IF THERES A SUBMIT ERROR?

(The original entry (page 34) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 24.)

Todo: do I want to talk about how parameters are keyed here? YES
Note on ignore_for_cache and on plugins (forward ref. plugins)

(The original entry (page 37) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 117.)

Todo: make a forward reference to Serializing tasks and results with
Pickle (page 55) section about storing the result (but not the args)

(The original entry (page 37) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 119.)

Todo: task identity and dependencies: there is a notion of “iden-
tity” of a task across runs here, that is different from the inside-a-run
identity (aka the task id integer allocated sequentially) – it’s the hash
of all arguments to the app. So what might look like two different
invocations fut1 = a(1); fut2 = a(1) to most of Parsl, is actually two
invocations of “the same” task as far as checkpointing is concerned
(because the two invocations of a have the same argument). Another
subtlety here is that this identity can’t be computed (and so we can’t
do any checkpoint-replacement) until the dependencies of a task have
been completed - we have to run the dependencies of a task T (perhaps
themselves by checkpoint restore) before we can ask if task T itself has
been checkpointed.

(The original entry (page 38) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 121.)
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Todo: maybe a simple DAG to modify here based on previous staging
talks

(The original entry (page 42) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 221.)

Todo: note about app future completing as soon as the value is avail-
able and not waiting till stage-out has happened - See issue #1279.

(The original entry (page 43) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 226.)

Todo: including rich dependency resolving - but that should be an
onwards mention of plugin points? and a note about this being a com-
mon mistake. but complicated to implement because it needs to tra-
verse arbitrary structures. which might give a bit of a tie-in to how
id_for_memo works)

(The original entry (page 43) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 233.)

Todo: earlier on there should be a state graph. then here the same
graph with the joining state.

(The original entry (page 47) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 321.)

Todo: Summarise by me pointing out that in my mind (not neces-
sarily in the architecture of Parsl) that from a core perspective these
are all quite similar, even though the user effects are all very differ-
ent. Which is a nice way to have an abstraction. And maybe that’s an
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interesting forwards architecture for Parsl one day. . .

(The original entry (page 47) is located in
/home/benc/parsl/src/parslguts/elaborating.rst, line 331.)

Todo: some visualizations for pieces of this could be loosely disas-
sembled pickle bytecode - otherwise lacking in code-level visualiza-
tion

(The original entry (page 55) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 4.)

Todo: the “function is in __main__ which is different remotely”

(The original entry (page 58) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 65.)

Todo: f does not have a name

This can happen in a few ways: the biggest one for Parsl
is that a python-app decorated function (yes, that’s every
app defined using a decorator) - the function body won’t
be the same as the value assigned to the app name vari-
able. because that vairable is used for the PythonApp ob-
ject, not the underlying function.

That can be worked around by letting a function get a
global name, using a variant of the decorator syntax I
talked about n the first chapter:

def myfunc(a,b):
return a+b

myapp = python_app(myfunc)

CONTENTS 3
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now the underlying function is available with from
wherever import myfunc and the Parsl app equivalent
can be invoked with myapp(3,4).

Another situation where a function does not have a global
name is when it is defined as a closure inside another
function:

def add_const(n):
def myfunc(a,n):
return a+n

myapp = python_app(add_const(7))

This is pretty common in certain functional styles of Python program-
ming. One way to think about how it is a problem is to try to write an
import statement to import the underlying function for myapp.

(The original entry (page 58) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 67.)

Todo: URL for Python bytecode/virtual machine documentation?

(The original entry (page 59) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 107.)

Todo: backref/crossref the worker environment section - it could
point here as justification/understanding of which packages should be
installed.

(The original entry (page 60) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 109.)

Todo: also mention cloudpickle as a dill-like pickle extension. They
are both installable alongside each other. . . and people mostly haven’t
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given me decent argumetns for cloudpickle because people don’t dig
much into understanding whats going on.

(The original entry (page 60) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 122.)

Todo: i think there’s a funcx approach to this that i could link to
that turns exceptions into strings, which are basic pickle data types we
should always be able to unpickle. see issue #3474. You lose the abil-
ity to catch specific exceptions (at least in the standard Python way).

(The original entry (page 61) is located in
/home/benc/parsl/src/parslguts/pickle.rst, line 136.)

Todo: one example of plotting

(The original entry (page 52) is located in
/home/benc/parsl/src/parslguts/monitoring.rst, line 117.)

Todo: deeper dive into workflow/tasks/try table schema - not trying
to be comprehensive of all schemas here but those three are a good set
to deal with

(The original entry (page 52) is located in
/home/benc/parsl/src/parslguts/monitoring.rst, line 124.)

Todo: the core task-related tables can get a hierarchical diagram
workflow/task/try+state/resource

(The original entry (page 53) is located in
/home/benc/parsl/src/parslguts/monitoring.rst, line 132.)
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Todo: label the various TaskRecord state transitions (there are only
a few relevant here) throughout this doc - it will play nicely with the
monitoring DB chapter later, to they are reflected not only in the log
but also in the monitoring database.

(The original entry (page 21) is located in
/home/benc/parsl/src/parslguts/taskpath.rst, line 268.)

Todo: for each, a sentence or two, and a source code reference

(The original entry (page 66) is located in
/home/benc/parsl/src/parslguts/plugins.rst, line 68.)

Todo: ref back to Elaborating tasks (page 33) if I write that section

(The original entry (page 69) is located in
/home/benc/parsl/src/parslguts/plugins.rst, line 139.)

Todo: link to serialization interface, and to pickle documentation for
pickle extensibility

(The original entry (page 69) is located in
/home/benc/parsl/src/parslguts/plugins.rst, line 143.)

Todo: source code

(The original entry (page 25) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 61.)

Todo: source code
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(The original entry (page 26) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 65.)

Todo: line numbers / source code link

(The original entry (page 26) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 69.)

Todo: a paragraph that in traditional HPC workloads, this launcher
command is often responsible for starting multiple copies of your
code on the same node - so if you wanted 24 cores used for an MPI
code, you might use mpirun (TODO: processes_per_node param) to
start 24 copies which would run in parallel. This is not how things
work with parsl block workers: both the process worker pool and the
WQ/TV equivalents usually manage all the tasks on a node from a sin-
gle worker. So if you’re feeling the temptation to make your launcher
launch multiple copies of the pilot job worker, maybe there’s some-
thing else going wrong? and note this is a common problem in modern
times, also with OMP, where multiple layers of software think they are
the one to spawn multiple processes/threads which leads to exponen-
tial explosion of threads. which doesn’t necessarily kill your workfload
but can lead to myterious performance problems. - also this section
should consider user apps which make the same assumption (so easily
3 layers to draw diagrams about!)

(The original entry (page 27) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 95.)

Todo: above processes_per_node param

(The original entry (page 28) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 97.)
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Todo: reference job status poller

(The original entry (page 28) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 106.)

Todo: reference block draining problem and matthew’s work.

(The original entry (page 30) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 147.)

Todo: write error handling section (as two parts of the same feedback
loop)

(The original entry (page 30) is located in
/home/benc/parsl/src/parslguts/blocks.rst, line 161.)
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CHAPTER

ONE

INTRODUCTION

Hello.

These are notes for a 3 hour course (6 x 25 minute sessions) for expe-
rienced Parsl users who want to level-up their ability to use Parsl or to
hack on the Parsl codebase by learning more about how Parsl works
inside.

This text is not intended to be a comprehensive guide to all parts of the
Parsl codebase, but it should get you started on further exploration.

You might like to have a throw-away installation of Parsl 2024.09.02
that you can work with as you go through these notes.

9
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CHAPTER

TWO

A SAMPLE TASK EXECUTION PATH

In this section, I’ll walk through the code as it executes a single Parsl
task: from defining and invoking an app, through to running on a High
Throughput Executor worker, and back again.

Here’s a simple workflow that you can run on a single computer. I’ll
point out as we go which bits would run on a worker node when run-
ning on an HPC system - but as far as this section is concerned there
isn’t much difference between running locally on your laptop vs using
a multiple-node configuration.

import parsl

def fresh_config():
return parsl.Config(
executors=[parsl.HighThroughputExecutor()],

)

@parsl.python_app
def add(x: int, y: int) -> int:
return x+y

with parsl.load(fresh_config()):
print(add(5,3).result())

This is nothing fancy: there’s a config in my preferred style, with al-

11
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most every parameter using a default value. All that is explicit is to
use the High Throughput Executor, rather than the default (and boring)
Thread Pool Executor.

I’m going to ignore quite a lot: what happens with parsl.load() and
what happens at shutdown; I’m going to defer batch system interac-
tions to the blocks chapter (page 23), and this example avoids many
of Parsl’s workflow features which I will cover in the task elaboration
chapter (page 33).

I’m going to call the Unix/Python process where this code runs, the
user workflow process. There will be quite a lot of other processes
involved, which I will cover as needed.

2.1 Defining a python_app

@parsl.python_app
def add(x: int, y: int) -> int:
return x+y

Normally def defines a function (or a method) in Python. With the
python_app decorator (defined at parsl/app/app.py line 108), Parsl
makes def mean something else: this now defines a Python app
which mostly looks like a function but with fancy Parsl things added.
The relevant fancy thing for this example is that add will return a
Future[int], a Future that will eventually get an int inside it, in-
stead of directly returning an int.

This decorator syntax is roughly equivalent to writing this. The ex-
ample script should behave the same if you substitute this code for the
above definition:

def add(x: int, y: int) -> int:
return x+y

add = parsl.python_app(add)

12 Chapter 2. A sample task execution path
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What happens is first a regular function called add is defined, so the
top level Python symbol add refers initially to that function.

Then the add symbol is redefined, to be the output of calling parsl.
python_app with the original add definition as an argument.

parsl.python_app is just a regular function. It’s allowed to do any-
thing it wants. At the end, add will end up as whatever that function
returns.

What it actually does is replace add with a PythonApp object that
wraps the original app function. In the next section, I’ll dig into that
PythonApp object a bit more.

Looking at types:

A normal function in Python has this type:

>>> def somefunc():
>>> return 7

>>> print(type(somefunc))
<class 'function'>

but add looks like this:

>>> print(type(add))
<class 'parsl.app.python.PythonApp'>

See also:

You can read more about decorators in the Python glossary.

2.2 Invoking a python_app

If add isn’t a function, what does this code (that looks like a function
invocation) mean?

2.2. Invoking a python_app 13
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add(5,3)

In Python, any class can be used with function call syntax, if it has a
__call__ magic method. Here is the PythonApp implementation, in
parsl/app/python.py, line 50 onwards:

50 def __call__(self, *args, **kwargs):
51

52 # ...

77 app_fut = dfk.submit(func, app_args=args,
78 executors=self.executors,
79 cache=self.cache,
80 ignore_for_cache=self.ignore_

→˓for_cache,
81 app_kwargs=invocation_kwargs,
82 join=self.join)
83

84 return app_fut

The PythonApp implementation of __call__ doesn’t do too much:
it massages arguments a bit but delegates all the work to the next com-
ponent along, the Data Flow Kernel referenced by the dfk variable.
dfk.submit returns immediately, without executing anything. It re-
turns an AppFuturewhich will eventually get the final task result, and
PythonApp returns that to its own caller. This is the future that a user
sees when they invoke an app.

The most important parameters to see are the function to execute,
stored in func and the arguments in app_args (a list of positional
arguments) and app_kwargs (a dict of keyword arguments). Those
three things are what we will need later on to invoke our function
somewhere else, and a lot of the rest of task flow is about moving
these around and sometimes changing them.

See also:

Magic methods surrounded by double underscores are the standard

14 Chapter 2. A sample task execution path
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Python way to make arbitrary classes customize standard Python be-
haviour. The most common one is probably __repr__ which allows
a class to define how it is rendered as a string. There are lots of others
documented in the Python data model.

2.3 The Data Flow Kernel

The code above called the submit method on a Data Flow Kernel
(DFK), the core object that manages a live workflow. That call cre-
ated a task inside the DFK. Every app invocation is paired with a task
inside the DFK, and the terminology will use those terms fairly in-
terchangeably. There is also usually only one of these DFK objects
around at any time, and so often I’ll talk about the DFK, not a DFK.

The DFK follows the God-object antipattern and is a repository for
quite a lot of different pieces of functionality in addition to task han-
dling. For example, it is the class which handles start up and shut-
down of all the other pieces of Parsl (including block scaling, execu-
tors, monitoring, usage tracking and checkpointing). I’m not going to
cover any of that here, but be aware when you look through the code
that you will see all of that in addition to task handling (it’s the longest
file in the codebase).

Inside dfk.submit (in parsl/dataflow/dflow.py around line 963) two
data structures are created: an AppFuture and a TaskRecord.

The AppFuture is the future that the user will get back from app in-
vocation, almost definitely without a result in it yet. It is a thin layer
around Python’s built-in concurrent.futures.Future class. This is re-
turned from the submit method and onwards back to the user imme-
diately. Later on in execution, this is how task completion will be
communicated to the submitting user.

The TaskRecord (defined in parsl/dataflow/taskrecord.py) contains
most of the state for a task.

From the many fields in TaskRecord, what we need for now are fields
for the app function, positional and keyword arguments to be able to

2.3. The Data Flow Kernel 15
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invoke the app code, and a reference to the AppFuture to communi-
cate the result afterwards.

Most of what happens next is task management that I will cover in
Elaborating tasks (page 33) - things like waiting for dependencies,
file staging, checkpointing. In this example, none of that happens and
the DFK will go straight to submitting the task to the High Throughput
Executor, giving a second future for the task, the executor future.

The DFK will use this execuctor future to do more task management
when the executor finishes executing the task.

I’ll dig into DFK much more in Elaborating tasks (page 33) - for now,
I’ll just show that the code makes a submit call to the chosen executor
(on line 761):

760 with self.submitter_lock:
761 exec_fu = executor.submit(function, task_record[

→˓'resource_specification'], *args, **kwargs)

and then adds a callback onto the executor future to run when the task
completes (at line 701):

701 exec_fu.add_done_callback(partial(self.handle_exec_
→˓update, task_record))

That callback will fire later as the result comes back. This style of
callback is used in a few places to drive state changes asynchronously.

2.4 HighThroughputExecutor.submit()

executor.submit() above will send the task to the executor I con-
figured, which is an instance of the High ThroughputExecutor. This is
the point at which the task would instead go to Work Queue or one of
the other executors, if the configuration was different. I’ll cover plugin
points like this in more depth in Modularity and Plugins (page 63).

16 Chapter 2. A sample task execution path
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The High Throughput Executor consists of a bunch of threads and pro-
cesses distributed across the various nodes you want to execute tasks
on.

Inside the user workflow process, the submit method packages the
task up for execution and sends it on to the interchange process.

Inside the user workflow process, the High Throughput Executor
submit method (parsl/executors/high_throughput/executor.py, line
632 onwards) packages the task up for execution and sends it on to
the interchange process:

666 fut = Future()
667 fut.parsl_executor_task_id = task_id
668 self.tasks[task_id] = fut
669

670 try:
671 fn_buf = pack_res_spec_apply_message(func,␣

→˓args, kwargs,
672 ␣

→˓resource_specification=resource_specification,
673 ␣

→˓buffer_threshold=1024 * 1024)
674 except TypeError:
675 raise SerializationError(func.__name__)
676

677 msg = {"task_id": task_id, "buffer": fn_buf}
678

679 # Post task to the outgoing queue
680 self.outgoing_q.put(msg)
681

682 # Return the future
683 return fut

The steps here are:

• make the executor future

• map it to the task ID so results handling can find it later

2.4. HighThroughputExecutor.submit() 17
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• serialize the task definition (that same triple of function, args,
keyword args, along with any resource specification) into a byte
stream fn_buf that is easier to send over the network (see Se-
rializing tasks and results with Pickle (page 55) later)

• construct a message for the interchange pairing the task ID with
that byte stream sequence

• send that message on the outgoing queue to the interchange

• return the (empty) executor future back to the DFK

Another piece of code will handle getting results back into that execu-
tor future later on.

All of the different processes involved in the High Throughput Ex-
ecutor communicate using ZeroMQ (ZMQ). I won’t talk about that in
much depth, but it’s a messaging layer that (in High Throughput Ex-
ecutor) delivers messages over TCP/IP. The outgoing_q above is a
ZMQ queue for submitting tasks to the interchange.

2.5 The Interchange

The interchange (defined in parsl/executors/high_throughput/interchange.py)
runs alongside the user workflow process on the submitting node. It
matches up tasks with available workers: it has a queue of tasks, and
it has a queue of process worker pool managers which are ready for
work.

Whenever it can match a new task (arriving on the outgoing task
queue) with a process worker pool that is ready for work, it will send
the task onwards to that worker pool. Otherwise, a queue of either
ready tasks or ready workers builds up in the interchange.

The matching process so far has been fairly arbitrary but we have been
doing some research on better ways to match workers and tasks - I’ll
talk a little about that later when talking about scaling in (page 23).

The interchange has two ZMQ connections per worker pool (one for
sending tasks, one for receiving results) and when this task is matched,

18 Chapter 2. A sample task execution path
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the definition will be sent onwards via the relevant per-pool connec-
tion.

2.6 The Process Worker Pool

On each worker node on our HPC system, a copy of the process worker
pool will be running - Blocks (page 23) will talk about how that comes
about. In this example workflow, the local system is the only worker
node, so there will only be one worker pool. But in a 1000-node run,
there would usually be 1000 worker pools, one running on each of
those nodes (although other configurations are possible).

These worker pools connect back to the interchange using two network
connections each (ZMQ over TCP) - so on the interchange process
you’ll need 2 fds per node. This is a common limitation to “number
of nodes” scalability of Parsl. (see issue #3022 for a proposal to use
one network connection per worker pool)

The source code for the process worker pool livces in
parsl/executors/high_throughput/process_worker_pool.py.

The worker pool consists of a few closely linked processes:

• The manager process which interfaces to the interchange (this
is why you’ll see a jumble of references to managers or worker
pools in the code: the manager is the externally facing interface
to the worker pool)

• Several worker processes - each worker process is a worker.
There are a bunch of configuration parameters and heuris-
tics to decide how many workers to run - this hap-
pens near the start of the process worker pool process at
parsl/executors/high_throughput/process_worker_pool.py line
210. There is one worker per simultaneous task, so usually one
per core or one per node (depending on application preference).

The task arrives at the manager, and the manager dispatches it to a free
worker. It is possible there isn’t a free worker, becuase of the pre-fetch
feature which can help in high throughput situations. In that case, the
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task will have to wait in another queue - ready to start execution when
a worker becomes free, without any more network activity.

The worker then deserialises the byte package that was originally se-
rialized all the way back in the user submit process, giving python ob-
jects for the function to run, the positional arguments and the keyword
arguments.

At this point, the worker process can invoke the function with those
arguments: the worker pool’s execute_task method handles that at
line 593

Now the original function has run! but in a worker that could have
been on a different node.

The function execution is probably going to end in two ways: a result
or an exception (actually there is a common third way, which is that it
kills the unix-level worker process for example by using far too much
memory or by a library segfault - or by the batch job containing the
worker pool reaching the end of its run time - that is handled, but I’m
ignoring that here)

This result needs to be set on the AppFuture back in the user work-
flow process. It flows back over network connections that parallel the
submitting side: first back to the interchange, and then to piece of the
High Throughput Executor running inside the submit process.

This final part of the High Throughput Executor is less symmetri-
cal: the user workflow script is not necessarily waiting for any re-
sults at this point, so the High Throughput Executor runs a second
thread to process results, the result queue thread implemented by
htex._result_queue_worker. This listens for new results and sets the
corresponding executor future.

Once the executor future is set, that causes the handle_exec_done
callback in the Data Flow Kernel to run. Some interesting task han-
dling might happen here (see Elaborating tasks (page 33) - things like
retry handling) but in this example, nothing interesting happens and
the DFK sets the AppFuture result.

Setting the AppFuture result wakes up the main thread which is sitting
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blocked in the .result() part of final bit of the workflow:

print(add(5,3).result())

. . . and the result can be printed.

So now we’re at the end of our simple workflow, and we pass out of
the parsl context manager. That causes parsl to do various bits of shut-
down. and then the user workflow process falls of the bottom and the
process ends.

Todo: label the various TaskRecord state transitions (there are only
a few relevant here) throughout this doc - it will play nicely with the
monitoring DB chapter later, to they are reflected not only in the log
but also in the monitoring database.
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CHAPTER

THREE

BLOCKS

In A sample task execution path (page 11), I assumed that process
worker pools magically existed in the right place: on the local ma-
chine with the example configuration, but on HPC worker nodes when
running a more serious workflow.

The theme of this chapter is: how to get those process worker pools
running on the worker nodes.

The configurations for blocks are usually the most non-portable pieces
of a Parsl workflow, because they are closely tied to the behaviour of
particular HPC machines: this part of the configuration describes what
an HPC machine looks like (at least, as much as Parsl needs to know)
and so the descriptions will be different for different machines.

Note: So this is one of the most useful areas for admins and users
to contribute documentation. For example, the Parsl user guide has
a section with configurations for different machines, and ALCF and
NERSC both maintain their own Parsl examples.
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3.1 Pilot jobs

Not all executors need worker processes - for example the Thread-
PoolExecutor runs tasks locally within the main workflow process.
But the High Throughput Executor and others use worker processes
running (for example) on the worker nodes of an HPC system.

This is known as the pilot job model.

These workers (or pilot jobs) don’t need to know what work they will
perform when they are launched. Once the workers are running they’ll
get their own work from (in the High Throughput Executor case) the
interchange.

Why do things this way when an HPC system already has a system
for running jobs (such as Slurm)? Because the overhead on that kind
of job can be very big - those systems are targeted more at the scale
of “run one job that uses 1000 nodes for 24 hours” but tasks in Parsl
might be subsecond: even getting a new Python process started to run
that subsecond task could be a prohibitive overhead.

As I mentioned above, most HPC systems have batch job systems that
prefer big submissions (in relation to the average Parsl task) and that
includes a preference for batch jobs that use many nodes (for example,
some systems will offer a discount for batch jobs that use over a certain
count - incentivising the use of a small number of many-node batch
jobs, even though a pilot job workload could sometimes be scheduled
more efficiently with a large number of smaller batch jobs)

In Parsl, it can be easy to get confused between the batch jobs which
are the units of work submitted to a batch system, and correspond to
blocks of workers; and tasks which correspond to individual app invo-
cations. These are different things, and there is no pre-planned allo-
cation of which task will run inside which batch job, because worker
pools running inside jobs pull tasks as they are ready for more work.

24 Chapter 3. Blocks



Parsl Guts, Release 2024.09.04

3.2 Starting a block of workers

With the configuration used in A sample task execution path (page 11),
when Parsl starts it will decide it wants some workers (how and why,
see the upcoming scaling section).

The unit of allocation of workers in Parsl is called a block.

This is translated by whichever execution provider is being used into
whatever the underlying batch system uses to represent a job or col-
lection of worker nodes or similar. For example, with traditional HPC
systems, the SlurmProvider will make 1 block = 1 Slurm batch job;
the KubernetesProvider will make 1 block = 1 pod; and with the
LocalProvider, there is no meaningful allocation of jobs and the
provider will run the workers directly on the local machine with a block
being the same as a Unix process.

The base class for all providers is ExecutionProvider, defined in
parsl/providers/base.py.

As far as getting a new block of workers running, this is the most im-
portant method that a provider must implement:

52 @abstractmethod
53 def submit(self, command: str, tasks_per_node:␣

→˓int, job_name: str = "parsl.auto") -> object:
54 ...

The key argument here is command. This will be (after some mutation)
be the Unix shell command that should be run on each allocated node
to start the workers.

In the HighThroughputExecutor, this command is formed like this at
executor start:

Todo: source code

and then the provider is invoked with it here:
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Todo: source code

In the Task Vine executor, something similar happens at line TODO
and line TODO (hrefs)

Todo: line numbers / source code link

Warning: tasks_per_node is always 1 here when called by
Parsl and is a fairly regular source of confusion to Parsl hack-
ers. Maybe it should be removed. It’s a vestige of an earlier
time when Parsl wanted the batch system to start multiple work-
ers on each worker node (for the long-removed IPyParallel execu-
tor). More recent executors (e.g. HighThroughputExecutor,
WorkQueueExecutor, TaskVineExecutor and MPIExecutor)
choose to manage (in different ways) how work is performed on a
particular node rather than asking the batch system for a particular
fixed number of workers.

Maybe interesting here is what is missing from the submit call: there
is no mention of batch system queues, no mention of how many
nodes to request in this block, no mention of pod image identifiers.
Attributes like that are usually the same for every block submitted
through (to/by?) the provider, and usually only make sense in the con-
text of whatever the underlying batch system is: for example, a slurm
job might have a queue specification and a kubernetes job might have
a persistent volume specification, to be set on all jobs. These are de-
fined in the initializer for each provider, so the provider API doesn’t
need to know about these specifics at all.
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3.3 Launchers

Some batch systems separate allocation of worker nodes and execution
of commands on worker nodes. In non-Parsl contexts that looks like:
you write a batch script and submit it to slurm or PBS, and inside that
batch script you prefix your application command line with something
like mpiexec or srun which causes your application to run on all the
worker nodes. Without that prefix, the command would run on a single
node (sometimes not even in the batch allocation!)

To support this, some providers take a launcher parameter, which
understands how to put that prefix onto the front of the relevant com-
mand. They’re mostly quite simple.

All of the included launchers live in parsl.launchers.launchers and usu-
ally consist of shell scripting around something like mpiexec or srun.

3.4 Who starts processes?

Todo: a paragraph that in traditional HPC workloads, this launcher
command is often responsible for starting multiple copies of your
code on the same node - so if you wanted 24 cores used for an MPI
code, you might use mpirun (TODO: processes_per_node param) to
start 24 copies which would run in parallel. This is not how things
work with parsl block workers: both the process worker pool and the
WQ/TV equivalents usually manage all the tasks on a node from a sin-
gle worker. So if you’re feeling the temptation to make your launcher
launch multiple copies of the pilot job worker, maybe there’s some-
thing else going wrong? and note this is a common problem in modern
times, also with OMP, where multiple layers of software think they are
the one to spawn multiple processes/threads which leads to exponen-
tial explosion of threads. which doesn’t necessarily kill your workfload
but can lead to myterious performance problems. - also this section
should consider user apps which make the same assumption (so easily
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3 layers to draw diagrams about!)

Todo: above processes_per_node param

3.5 Choosing when to start or end a
block

Parsl has some scaling code that starts and ends blocks as the task load
presented by a workflow changes.

Todo: reference job status poller

There are three scaling strategies, which run (by default) every 5 sec-
onds.

There are three strategy parameters defined on providers which are
used by the scaling strategy: init_blocks, min_blocks and max_blocks.
Broadly, at the start of a run, Parsl will launch an initial number of
blocks (init_blocks) and then scale between a minimum (min_blocks)
and maximum (max_blocks) number of blocks during the run.

3.5.1 The init only strategy, none

This strategy only makes use of the init_blocks configuration pa-
rameter. At the start of a workflow, it starts the specified number of
blocks. After that it does not try to start any more blocks.

Warning: Question: What happens if all of these initially started
blocks terminate before all of the workflow’s work is completed?
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3.5.2 The simple strategy

This strategy will add more blocks when it sees that there are not
enough workers.

When an executor becomes completely idle for some time, it will can-
cel all blocks. Even one task on the executor will inhibit cancellation
- the history of this is that for abstract block-using executors, there is
nothing to identify which blocks (if any) are idle. so scale out and
scale in are not symmetric operations in that sense.

The scaling calculation looks at the number of tasks outstanding and
compares it to the number of task slots (worker slots?) that are either
running now or queued to be run.

There is a parallelism parameter (where?), to allow users to control
the ratio of tasks to workers - by default this is 1 so Parsl will try to
submit blocks to give as many worker slots as there are tasks. This
does not assign tasks to particular workers: so it is common for one
block to start up and a lot of the outstanding work to be processed by
that block, before a second block starts which is then completely idle.

Warning: Question: what does init_blocks mean in this context?
Start init_blocks blocks then immediately scale (up or down)
to the needed number of blocks?

3.5.3 The htex_auto_scale strategy

This is like the simple strategy for scale-out, but with better scale-in
behaviour that makes use of some High Throughput Executor features:
the high throughput executor knows which blocks are empty, so when
there is scale-in pressure, can scale-in empty blocks while leaving non-
empty blocks still running. Some prototype work has happened to try
to make htex try to make blocks empty faster too, but that has not
reached the production codebase.
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Warning:

Todo: reference block draining problem and matthew’s work.

What link here? if more stuff merged into Parsl or existing as a PR
(I think there is a PR?), then the PR can be linkable. otherwise later
on maybe a SuperComputing 2024 publication - but still unknown.

3.5.4 Starting workers in other ways

You can start workers without using this automated scaling: set
init_blocks = min_blocks = max_blocks = 0, and then find the worker
command line in the log file and run it yourself in which ever situation
you want. This is good for trying things out that the provider or scaling
code can’t do.

The Work Queue and Task Vine executors also have their own ex-
ecutor specific ways for starting workers: Work Queue has a worker
factory command line tool and TaskVine has a worker launch method
configuration parameter.

3.6 block error handling

Todo: write error handling section (as two parts of the same feedback
loop)
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3.7 Worker environments

batch job environments (esp worker_init) - think about parsl require-
ments a bit more: Python versions, Parsl versions, installed user pack-
ages. forward reference serialization chapter.

batch job systems generally won’t make the environment that your
batch job providers look like the environment the submission comes
from (in the case of eg. kubernetes, that’s very deliberate: the job
description describes the environment, not whatever ambient environ-
ment existing around the submission command. so there’s a bit of
tension there when you want the environment to magically look like
your submission environment)

generally the python and parsl versions need to be the same as on the
submit side (although people often push on this limit, and the serial-
ization chapter will give some hints about understanding what can go
wrong)
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CHAPTER

FOUR

ELABORATING TASKS

Earlier on, I talked about the Data Flow Kernel being given a task and
mostly passing it straight on to an executor. This section will talk about
the other things the Data Flow Kernel might do with a task, beyond
“just run this.”

In this section, I’m going to present several Parsl features which from a
user-facing perspective are quite different, but they all have a common
theme of the DFK doing something other than “just run this.” and have
some similarities in how they are implemented.

4.1 Trying tasks many times or not at all

4.1.1 Retries

When the Data Flow Kernel tries to execute a task using an Executor,
this is called a try. Usually there will be one try, called try 0.

If the user has configured retries, and if try 0 fails (indicated by the
executor setting an exception in the executor future then the Data Flow
Kernel will retry the task. (retry without the re- is where the term “try”
comes from)
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Todo: if try 0 fails OR IF THERES A SUBMIT ERROR?

Let’s have a look at the launch and retry flow in the Parsl
source code. The Data Flow Kernel “launches” tasks into an
executor using a method _launch_if_ready_async, starting at
parsl/dataflow/dflow.py line 645.

(Note that the term “launch” here is distinct from the term “launch”
used in the Launcher abstraction in the blocks chapter)

A task is ready to launch if it is in pending state and has no incomplete
dependencies.

655 if task_record['status'] != States.pending:
656 logger.debug(f"Task {task_id} is not pending, so␣

→˓launch_if_ready skipping")
657 return
658

659 if self._count_deps(task_record['depends']) != 0:
660 logger.debug(f"Task {task_id} has outstanding␣

→˓dependencies, so launch_if_ready skipping")
661 return

If the code gets this far then a bit of book keeping and error handling
happens, and then at line 673, the launch_task method will submit
the task to the relevant executor and return the executor future.

673 exec_fu = self.launch_task(task_record)

. . . and then line 701 will attach a callback (DataFlowKernel.
handle_exec_update) onto that executor future. This will be called
when a result or exception is set on the executor future. Now
_launch_if_ready_async can end: the Data Flow Kernel doesn’t
have to think about this task any more until it completes - and that
end-of-task behaviour lives in handle_exec_update.
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701 exec_fu.add_done_callback(partial(self.handle_exec_
→˓update, task_record))

handle_exec_update is defined in dflow.py at line 323. It contains
the majority of task completion code.

Task completion behaviour is defined in two cases: when the executor
future contains a successful result (line 402 onwards) and when the
executor future contains an exception (line 346 onwards)

The happy path of execution completing normally happens at line 408
calling DataFlowKernel._complete_task to set the AppFuture
result (which is the object that lets the user see the result).

This section, though, is not about that. It is about the retry path: the
exception path should be taken, and Parsl should send the task to the
executor again.

In the exception case starting at line 346, the fail_cost (by default,
the count of tries so far, but see the plugin section for more complica-
tions) is compared with the configured retry limit (Config.retries).

Line 368 provides the default “each try costs 1 unit” behaviour, with
the 16 lines before that implementing the pluggable retry_handler.

368 task_record['fail_cost'] += 1

At line 377 and 392 there are two answers to the question: Is there
enough retry budget left to do a retry?

If so, mark the task as state pending (again) at line 384 and then later
on at line 454 call launch_if_ready. The task will be launched
again just like before, but a bunch of task record updates have hap-
pened while processing the retry.

If there isn’t enough retry budget left, then line 392 onwards marks the
task as failed and marks the task’s AppFuture as completed with the
same exception that the executor future failed with. This is also how
tasks fail In the default configuration with no retries: this code path is
taken on all failures because the default retry budget is 0.
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4.1.2 Checkpointing

I just talked about the Data Flow Kernel trying to execute a task many
times, rather than the default of just once. Going in the other direction,
there are times when Data Flow Kernel can complete a task without
trying to execute it at all - namely, when checkpointing is turned on.

Note: three different names used for overlapping/related concepts:
checkpointing, caching and memoization - there’s no real need for us-
ing three different terms and I think as part of ongoing work here those
terms could merge.

Parsl checkpointing does not try to capture and restore the state of a
whole Python workflow script. Restarting a checkpointed workflow
script will run the whole script from the start, but when the Data Flow
Kernel receives a task that has already been run, instead of trying it
even once, the result stored in the checkpoint database will be used
instead.

When a workflow is started with an existing checkpointing database
specified in Config.checkpoint_files, all of the entries in all of
those files are loaded in to an in-memory dict stored in a Memoizer.
This happens in DataFlowKernel.__init__ at line 168.

When a task is ready to run, DataFlowKernel.
_launch_if_ready_async calls DataFlowKernel.launch_task.
This will usually submit the task to the relevant executor at line 761
returning a Future that will eventually hold the completed result.
But a few lines before at line 728, it will check the Memoizer to see
if there is a cached result, and if so, return early with a Future from
the Memoizer contained in the cached result in place of a Future
from the executor.

728 memo_fu = self.memoizer.check_memo(task_record)
729 if memo_fu:
730 logger.info("Reusing cached result for task {}".

→˓format(task_id))
(continues on next page)
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(continued from previous page)

731 task_record['from_memo'] = True
732 assert isinstance(memo_fu, Future)
733 return memo_fu

The rest of the code still sees an executor-level future, but it hap-
pens to now come from the Memoizer rather than from the relevant
Executor.

If a task is actually run by an executor (because it was not avail-
able in the existing checkpoint database), then on completion (in
DataFlowKernel.handle_app_update which is another callback,
this time run when an AppFuture is completed) DataFlowKernel.
checkpointwill be invoked to store the new result into the Memoizer
and (depending on configuration) the checkpoint database, at line 566
onwards.

Warning: handle_app_update is a bit of a con-
currency wart: because it runs in a callback associ-
ated with the AppFuture presented to a user, the code
there won’t necessarily run in any particular order wrt
user code and so it can present some race conditions.
This code could move into end-of-task completion
handling elsewhere in the DFK, perhaps. See issue
#1279.

Todo: do I want to talk about how parameters are keyed here? YES
Note on ignore_for_cache and on plugins (forward ref. plugins)

Todo: make a forward reference to Serializing tasks and results with
Pickle (page 55) section about storing the result (but not the args)
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Todo: task identity and dependencies: there is a notion of “iden-
tity” of a task across runs here, that is different from the inside-a-run
identity (aka the task id integer allocated sequentially) – it’s the hash
of all arguments to the app. So what might look like two different
invocations fut1 = a(1); fut2 = a(1) to most of Parsl, is actually two
invocations of “the same” task as far as checkpointing is concerned
(because the two invocations of a have the same argument). Another
subtlety here is that this identity can’t be computed (and so we can’t
do any checkpoint-replacement) until the dependencies of a task have
been completed - we have to run the dependencies of a task T (perhaps
themselves by checkpoint restore) before we can ask if task T itself has
been checkpointed.

4.2 Modifying the arguments to a task

In the previous section I talked about choosing how many times to
execute a task, and maybe replacing the whole executor layer execution
with something else. In this section, I’ll talk about modifying the task
before executing it, driven by certain special kinds of arguments.

4.2.1 Dependencies

Parsl task dependency is mediated by futures: if a task is invoked
with some Future arguments, that task will eventually run when all
of those futures have results, with the individual future results substi-
tuted in place of the respective Future arguments. (so you can use
any Future as an argument - it doesn’t have to be a Parsl AppFuture)

Earlier on (in the retry section) I talked about how DataFlowKernel.
_launch_if_ready_async would return rather than launch a task if
DataFlowKernel._count_deps counted any outstanding futures.

This happens in a few stages:
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• as part of DataFlowKernel.submit (the entry point for
all task submissions), at line 1078, DataFlowKernel.
_gather_all_deps examines al of the arguments for the task
to find Future objects that the task depends on. These are then
stored into the task record.

1078 depends = self._gather_all_deps(app_args, app_
→˓kwargs)

1079 logger.debug("Gathered dependencies")
1080 task_record['depends'] = depends

• In order to get launch if ready to be called when all the futures
are done, each future has a callback added which will invoke
launch if ready

• inside _launch_if_ready_async, DataFlowKernel.
_count_deps loops over the Future objects in
task_record['depends'] and counts how many
are not done. If there are any not-done futures,
_launch_if_ready_async returns without launching:

655 if task_record['status'] != States.pending:
656 logger.debug(f"Task {task_id} is not pending,

→˓ so launch_if_ready skipping")
657 return
658

659 if self._count_deps(task_record['depends']) !=␣
→˓0:

660 logger.debug(f"Task {task_id} has␣
→˓outstanding dependencies, so launch_if_ready␣
→˓skipping")

661 return
662

663 # We can now launch the task or handle any␣
→˓dependency failures

664

665 new_args, kwargs, exceptions_tids = self._
→˓unwrap_futures(task_record['args'],

(continues on next page)
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(continued from previous page)

666 ␣
→˓ task_record['kwargs'])

So _launch_if_ready_async might run several times, once
for every dependency Future that completes. When the
final outstanding future completes, that final invocation of
_launch_if_ready_asyncwill see no outstanding dependen-
cies - the task will be ready in the “launch if ready” sense.

At that point, the DFK unwraps the values and/or errors in all of
the dependency futures. _unwrap_futures takes the full set of
arguments (as a sequence of positional arguments and a dictio-
nary of keyword arguments) and replaces each Future with the
value of that Future. The arguments for the task are replaced
with these unwrapped arguments.

It is possible that a Future contains an exception rather than
a result, and these exceptions are returned as the third value,
exceptions_tids. If there are any exceptions here, that means
one or more of the dependencies failed and we won’t be able to
execute this task. So the code marks that code as failed (in a
dep_fail state to distinguish it from other failures).

Otherwise, task execution proceeds with this freshly modified
task.

Warning: how can we meainingfully return new_args and
kwargs if there were any exceptions?
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4.2.2 File staging

Another modification to the arguments of a task happens with the file
staging mechanism. In the dependency handling code, special mean-
ing is attached to Future objects. In the file staging code, special
meaning is attached to File objects.

The special meaning is that when a user supplies a File object as a
parameter, then Parsl should arrange for file staging to happen before
the task runs or after the task completes.

Warning: The terminology around file staging is a bit jumbled.
There is a historical conflation of “files” and “data” so file staging
is sometimes called data staging, and a big piece of staging code
is called the “data manager”, despite being focused on files not
other data such as Python objects. In configuration, file staging
providers are configured using a “storage access” parameter.

In DataFlowKernel.submit, at task submit time, the arguments are
examined for file objects, and the file staging code can make substitu-
tions. Like dependencies, substitutions can happen to positional and
keywords arguments, but the function to be executed can be substituted
too!

1058 # Transform remote input files to data futures
1059 app_args, app_kwargs, func = self._add_input_

→˓deps(executor, app_args, app_kwargs, func)
1060

1061 func = self._add_output_deps(executor, app_args,␣
→˓app_kwargs, app_fu, func)

1062

1063 logger.debug("Added output dependencies")
1064

1065 # Replace the function invocation in the TaskRecord␣
→˓with whatever file-staging

1066 # substitutions have been made.
(continues on next page)
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(continued from previous page)

1067 task_record.update({
1068 'args': app_args,
1069 'func': func,
1070 'kwargs': app_kwargs})

This supports two styles of file staging:

A file staging provider (invoked inside _add_input_deps or
_add_output_deps) can submit staging tasks to the workflow. For
staging in, it can create stage-in tasks and substitute a Future for the
original File object. These futures will then be depended on by the
dependency handling code which runs soon after. For outputs, tasks
can be submitted which depend on the task completing, by depending
on app_fu. With this style of staging, file transfers are treated as their
own workflow tasks and so, for example, you can see them as separate
tasks in the monitoring database.

The other style of file staging runs as a wrapper around the application
function. A file staging provider replaces the function defined by the
app with a new function which performs any stage in, runs the orig-
inal app function, performs any stage out and returns the result from
the app function. This style is aimed at situations where staging must
happen close to the task - for example, if there is no shared filesystem
between workers, then it doesn’t make sense to stage in a file on one
arbitary worker and then try to use it on another arbitrary worker.

Parsl has example HTTP staging providers for both styles so you can
compare how they operate. These are in parsl/data_provider/http.py.

Todo: maybe a simple DAG to modify here based on previous staging
talks

Warning:
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Todo: note about app future completing as soon as the value is
available and not waiting till stage-out has happened - See issue
#1279.

4.2.3 Rich dependency resolving

Todo: including rich dependency resolving - but that should be an
onwards mention of plugin points? and a note about this being a com-
mon mistake. but complicated to implement because it needs to tra-
verse arbitrary structures. which might give a bit of a tie-in to how
id_for_memo works)

Note: Future development: these can look something like “build
a sub-workflow that will replace this argument with the result of a
sub-workflow” but not quite: file staging for example, has different
modes for outputs, and sometimes replaces the task body with a new
task body, rather than using a sub-workflow. Perhaps a more general
“rewrite a task with different arguments, different dependencies, dif-
ferent body” model?

4.3 Wrapping tasks with more Python

The file staging section talked about replacing the user’s original app
function with a wrapper that does staging as well as executing the
wrapped original function.

That’s a common pattern in Parsl, and happens in at least these places:

• Bash apps, which execute a unix command line, are mostly
implemented by wrapping remote_side_bash_executor (in
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parsl/app/bash.py) around the user’s Python app code. On the
remote worker, that wrapper executes the user’s Python app code
to generate the command line to run, and then executes that as
a unix command, turning the resulting unix exit code into an
exception if necessary.

That means no part of Parsl apart from the bash_app decorator
and corresponding BashApp have any idea what a bash app is.
The rest of Parsl just sees Python code like any other task.

• When resource monitoring is turned on, the DFK wraps
the users task in a monitoring wrapper at launch, at
parsl/dataflow/dflow.py line 74. This wrapper starts a separate
unix process that runs alongside the worker, sending informa-
tion about resource usage (such as memory and CPU times)
back to the monitoring system.

• The python_app timeout parameter is implemented as wrap-
per which starts a thread to injects an exception into an
executing Python app when the timeout is reached. See
parsl/app/python.py line 18.

• All apps are wrapped with wrap_error. This wrapper (defined
in parsl/app/errors.py line 134) catches exceptions raised by the
user’s app code and turns it into a RemoteExceptionWrapper
object. This is intended to make execution more robust when
used with executors which do not properly handle exceptions
in running tasks. The RemoteExceptionWrapper is unwrapped
back into a Python exception as part of the Data Flow Kernel’s
result handling.

Note: This is one of the hardest (for me) conceptual problems with
dealing generally with MPI. What does an MPI “run this command
line on n ranks” task interface look like when we also want to say “run
this arbitrary wrapped Python around a task”?

44 Chapter 4. Elaborating tasks

https://github.com/Parsl/parsl/blob/3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/app/bash.py#L13
https://github.com/Parsl/parsl/blob/3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/dataflow/dflow.py#L747
https://github.com/Parsl/parsl/blob/3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/app/python.py#L18
https://github.com/Parsl/parsl/blob/3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/app/errors.py#L134


Parsl Guts, Release 2024.09.04

4.4 Join apps: dependencies at the end
of a task

Join apps are a way to launch new tasks (and other Future-like)
behaviour inside a workflow, avoiding blocking use of Future.
result() which can hurt concurrency.

The original idea for them was to allow “sub-workflows” to be
launched as results became available, when the sub-workflow couldn’t
even be described until some result is available - for example, we need
to launch n tasks but we don’t know what n is until later.

Later on, it turned out they can be used to calls into other execution
systems that return Future objects. For example, here’s a blog post
about submitting into Globus Compute using join apps.

Users make use of this by writing some Python code inside a join app
that launches tasks and returns the Futures of those tasks. When this
code finishes, the task enters a new state (not used for other apps)
called joining which looks a bit like dependency handling, but at
the result end of the task. Parsl will wait until all of the returned fu-
tures have completed and then return the contents of those futures as
the result of the task.

The join_app decorated is implemented as a variant of the
python_app decorator that sets an additional bit to indicate it is a join
app and forces execution to happen on the _parsl_internal thread
pool executor.

The user’s app code is forced to execute onto the parsl_internal
because it must run in the same process as the Data Flow Kernel:
it wants wants submit tasks to the same Data Flow kernel or some-
thing else running in the main workflow process (rather than a limited
worker environment) and Future objects don’t make sense to move
across the network between processes: they’re a dynamic reflection of
some local execution state.

That join flag finds its way into the TaskRecord. It doesn’t affect exe-
cution of the app until the code path in handle_exec_update which
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deals with successful task completion (at parsl/dataflow/dflow.py line
134).

134 if not task_record['join']:
135 self._complete_task(task_record, States.exec_done,

→˓ res)
136 self._send_task_log_info(task_record)
137 else:
138 # This is a join task, and the original task's␣

→˓function code has
139 # completed. That means that the future returned␣

→˓by that code
140 # will be available inside the executor future,␣

→˓so we can now
141 # record the inner app ID in monitoring, and add␣

→˓a completion
142 # listener to that inner future.
143

144 joinable = future.result()
145

146 # Fail with a TypeError if the joinapp python␣
→˓body returned

147 # something we can't join on.
148 if isinstance(joinable, Future):
149 self.update_task_state(task_record, States.

→˓joining)
150 task_record['joins'] = joinable
151 task_record['join_lock'] = threading.Lock()
152 self._send_task_log_info(task_record)
153 joinable.add_done_callback(partial(self.handle_

→˓join_update, task_record))

In the normal (non-join-app) case, that code will complete the task (for
example by setting the AppFuture result. In the join case, the task
instead goes into a new joining state, and further completion will
happen in another callback, when the joinable Future is completed.
There is another case right after to handle the app returning a list of
Futures.
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That handle_join_update callback looks quite like dependency
handling of launch_if_ready: it will run once for each joinable
Future, it checks if all the joinable Futures are completed, and moves
the task onto the next state if so - in this case, marking the task as
complete (vs the dependency behaviour of launching the task)

Todo: earlier on there should be a state graph. then here the same
graph with the joining state.

See also:

If you’re interested in functional programming, join apps basically
treat futures as a forming a monad. The term “join” comes from
monadic join that takes Future[Future[X]] -> Future[X]which
is the extra behaviour that join apps add onto the end of regular Python
apps. If none of that makes sense, don’t worry: you don’t need cate-
gory theory to use join_app!

4.4.1 Putting these all together

Todo: Summarise by me pointing out that in my mind (not neces-
sarily in the architecture of Parsl) that from a core perspective these
are all quite similar, even though the user effects are all very differ-
ent. Which is a nice way to have an abstraction. And maybe that’s an
interesting forwards architecture for Parsl one day. . .
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CHAPTER

FIVE

UNDERSTANDING THE MONITORING
DATABASE

Parsl can store information about workflow execution into an SQLite
database. Then you can look at the information, in a few different
ways.

5.1 Turning on monitoring

Here’s the workflow used in A sample task execution path (page 11),
but with monitoring turned on:

import parsl

def fresh_config():
return parsl.Config(
executors=[parsl.HighThroughputExecutor()],
monitoring=parsl.MonitoringHub(hub_address =

→˓"localhost")
)

@parsl.python_app
def add(x: int, y: int) -> int:
return x+y

(continues on next page)
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(continued from previous page)

@parsl.python_app
def twice(x: int) -> int:
return 2*x

with parsl.load(fresh_config()):
print(twice(add(5,3)).result())

Compared to the earlier version, the changes are adding monitoring=
parameter to the Parsl configuration, and adding an additional app
twice to make the workflow a bit more interesting.

After running this, you should see a new file, runinfo/monitoring.
db:

$ ls runinfo/
000
monitoring.db

This new file is an SQLite database shared between all workflow runs
that use the same runinfo/ directory.

5.2 Using monitoring information

There are two main approaches to looking at the monitoring database:
the prototype parsl-visualize tool, and Python data analysis.

5.2.1 parsl-visualize web UI

Parsl comes with a prototype browser-based visualizer for the moni-
toring database.

Start it like this, and then point your browser at the given URL.
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$ parsl-visualize
* Serving Flask app 'parsl.monitoring.
→˓visualization.app'
* Debug mode: off
WARNING: This is a development server. Do not use␣
→˓it in a production deployment. Use a production␣
→˓WSGI server instead.
* Running on http://127.0.0.1:8080
Press CTRL+C to quit

Here’s a screenshot, showing the above two-task workflow spending
most of its 5 second run with the add task in launched state (waiting
for a worker to be ready to run it), and the twice task in pending
state (waiting for the add task to complete).

I’m not going to go further into parsl-visualize but you can run
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your own workflows and click around to explore.

5.2.2 Using data frames

A different approach preferred by many data-literate users is to treat
monitoring data like any other Python data, using Pandas.

This example loads the entire task table (for all known workflows) into
a data frame and then extracts the task completion times using Pandas
notation:

import pandas as pd
import sqlite3

c = sqlite3.connect("runinfo/monitoring.db")
df = pd.read_sql_query("SELECT * FROM task", c)
c.close()

print(df['task_time_returned'])

$ python3 panda_mon.py
0 2024-09-22 17:44:52.947501
1 2024-09-22 17:44:53.005619
Name: task_time_returned, dtype: object

Todo: one example of plotting

5.3 What is stored in the database?

Todo: deeper dive into workflow/tasks/try table schema - not trying
to be comprehensive of all schemas here but those three are a good set
to deal with
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The monitoring database SQL schema is defined using SQLAlchemy’s
object-relational model at parsl/monitoring/db_manager.py line 132
onwards.

Warning: The schema is defined a second time in
parsl/monitoring/visualization/models.py line 12 onwards. See is-
sue #2266 for more discussion.

These tables are defined:

Todo: the core task-related tables can get a hierarchical diagram
workflow/task/try+state/resource

• workflow - each workflow run gets a row in this table. A
workflow run is one call to parsl.load() with monitoring en-
abled, and everything that happens inside that initialized Parsl
instance.

• task - each task (so each invocation of a decorated app) gets a
row in this table

• try - if/when Parsl tries to execute a task, the try will get a row
in this table. As mentioned in Elaborating tasks (page 33), there
might not be any tries, or there might be many tries.

• status - this records the changes of task status, which in-
clude changes known on the submit side (in TaskRecord) and
changes which are not otherwise known to the submit side:
when a task starts and ends running on a worker. You’ll see
running and running_ended states in this table which will
never appear in the TaskRecord. One task row may have many
status rows.

• resource - if Parsl resource monitoring is turned on (TODO:
how?), a sub-mode of Parsl monitoring in general, then a re-
source monitor process will be placed alongside the task (see
Elaborating tasks (page 33)) which will report things like CPU
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time and memory usage periodically. Those reports will be
stored in the resource table. So a try of a task may have many
resource table rows.

• block - when the scaling code starts or ends a block, or asks
for status of a block, it stores any changes into this table. If
enough monitoring is turned on, the block where a try runs will
be stored in the relevant try table row.

• node - this one is populated with information about connected
worker pools with htex (and not at all with other executors),
populated by the interchange when a pool registers or when it
changes status (disconnects, is set to holding, etc)
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CHAPTER

SIX

SERIALIZING TASKS AND RESULTS
WITH PICKLE

Todo: some visualizations for pieces of this could be loosely disas-
sembled pickle bytecode - otherwise lacking in code-level visualiza-
tion

In a lot of the code examples so far, Python objects go from one piece
of code ot another as regular arguments or return values. But in a
few places, those objects need to move between Python processes and
usually that is done by turning them into a byte stream at one end using
Python’s built in pickle library, sending that byte stream, and turning
the byte stream back into a new Python object at the other end.

Some of the places this happens:

• sending task definitions (functions and arguments) from the
High Throughput executor in the users workflow script to the
process worker pool; and sending results back the other way.

• Storing results in the checkpoint database, to be loaded by a
later Python process, and also in computing object equality for
looking up checkpoint results - see Elaborating tasks (page 33).

• Sending monitoring messages
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• Communication between some different Python processes -
both high throughput executor and the monitoring system in-
volve multiple processes, and they often send each other ob-
jects (often dictionaries) over network and interprocess com-
munication. Sometimes without it being explicit (for exam-
ple, Python’s multiprocessing library makes heavy use of
pickle). ZMQ’s send_pyobj / recv_pyobj uses pickle to turn
the relevant Python object into a bytestream that can be sent over
ZMQ, and back.

A lot of the time, this works pretty transparently and doesn’t need
much thought: for example, a Python integer object 123456 is easy
to pickle into something that comes out the other end as an equivalent
object.

But, there are several situations in Parsl where there are complications,
and it can help to have some understanding of what is happening in-
side pickle when trying to debug things - rather than trying to regard
pickle as a closed magical library.

intro should refer to not regarding this as magic, despite most people
desperately hoping it is magic and then not trying to understand whats
happening. this is needs a bit of programming language thinking, way
more than routing “tasks as quasi-commandlines”

I’ll use the term pickling and serializing fairly interchangeably: seri-
alization is the general word for turning something like an object (or
graph of objects) into a stream of bytes. Pickling is a more specific
form, using Python’s built in Pickle library.

As I mentioned in A sample task execution path (page 11), when the
High Throughput Executor wants to send a function invocation to a
worker, it serializes the function and its arguments into a byte se-
quence, and routes that to a worker, where that byte sequence is turned
back into objects that are in some sense equivalent to the original ob-
jects. Task results follow a similar path, in reverse.

That serialization is actually mostly pluggable, but basically everyone
uses some variant of pickle (most often the dill library) because that’s
the default and there isn’t much reason to change.
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For most things that look like simple data structures, pickling is pretty
simple. For example, almost anything that you can imagine some ob-
vious representation in JSON, plain pickle won’t have a problem.

There are a few areas where it helps to have some deeper understanding
of whats going on, so that you don’t run into “mystery pickling errors
because the magic is broken.”

6.1 Tiny pickle tutorial

This is a simple example of Pickle that is enough for most use cases:
one function dumps turns a fairly arbitrary Python object into a byte
sequence, and another loads turns it back into an object again.
The point of doing this is that moving a byte sequence around is a
much clearer, more flexible operation than sending an arbitrary object
around.

b: bytes = pickle.dumps(some_obj)

# send b somewhere through time and space

some_object.loads(b)

6.2 Functions

6.2.1 Using pickle

You have probably got some notion of what it means to send a function
across the network, and those preconceptions are almost definitely not
how Parsl does it. So you need to put those preconceptions aside.

pickle on its own cannot send the definition of functions. If you try
to pickle a function named mymodule.f, the resulting pickle contains
the equivalent of from mymodule import f.
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So in order for this to unpickle in the Python process at the other end,
that statement from mymodule import f needs to work. The usual
Python reasons why that statement might not work apply to unpickling.
For example, mymodule needs to be installed, and needs to be enough
of a compatible version to import f.

Todo: the “function is in __main__ which is different remotely”

Todo: f does not have a name

This can happen in a few ways: the biggest one for Parsl
is that a python-app decorated function (yes, that’s every
app defined using a decorator) - the function body won’t
be the same as the value assigned to the app name vari-
able. because that vairable is used for the PythonApp ob-
ject, not the underlying function.

That can be worked around by letting a function get a
global name, using a variant of the decorator syntax I
talked about n the first chapter:

def myfunc(a,b):
return a+b

myapp = python_app(myfunc)

now the underlying function is available with from
wherever import myfunc and the Parsl app equivalent
can be invoked with myapp(3,4).

Another situation where a function does not have a global
name is when it is defined as a closure inside another
function:

def add_const(n):
def myfunc(a,n):
return a+n

(continues on next page)
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(continued from previous page)

myapp = python_app(add_const(7))

This is pretty common in certain functional styles of Python program-
ming. One way to think about how it is a problem is to try to write an
import statement to import the underlying function for myapp.

6.2.2 Using dill

Parsl makes extensive use of the dill library. Dill aims to let you se-
rialize all the bits of Python that pickle cannot deal with, building on
top of the Pickle protocol.

For functions, it tries to address the above problems by using its own
function serialization, in circumstances where it has decided that the
default pickle behaviour will not work (sometimes deciding correctly,
sometimes using a heuristic which can go wrong).

dill function serialization does not use the pickle method of send-
ing by reference. Instead it sends the Python bytecode for the function.
This does not need the function to be importable at the receiving end.
Some downsides of this approach are that Python bytecode is not com-
patible across Python releases, and dill does not contain any protec-
tion for this: executing bytecode from a different Python version can
result in the executing Python process exiting or worse, perhaps even
incorrect results. Functions serialized this way can also sometimes
bring along a lot of their environment (if dill decides that environment
will also not be available remotely) which can result in extremely large
serialized forms, and occasionally crashes due to serializing the unse-
rializable - see Parsl issue #2668 for example.

Todo: URL for Python bytecode/virtual machine documentation?
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Todo: backref/crossref the worker environment section - it could
point here as justification/understanding of which packages should be
installed.

6.2.3 Dill vs Pickle

dill and pickle will between them usually be able to serialize a function
one way or the other, but it can be quite subtle which method was
chosen, and the two methods have very different characteristics:

• pickle: if we can import the function from an installed library.
works across python versions

• dill: if we cannot import the function from an installed library.
likely to cause random behaviour across python versions.

subtleties of chosing between the two include where a file is imported
from (so that dill might decide it is an installed library, which can be
serialized as an import, or might decide it is not an installed library
but instead user code that it does not expect to be available remotely
and so must be sent as bytecode)

Todo: also mention cloudpickle as a dill-like pickle extension. They
are both installable alongside each other. . . and people mostly haven’t
given me decent argumetns for cloudpickle because people don’t dig
much into understanding whats going on.

6.3 Exceptions

The big deal here is with trying to use package specific classes, only
having them installed on the remote side, but then not realising that an
exception being raised is also a package specific class.
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Environments have to be consistent all over. That doesn’t mean they
have to be identical. But problems arise when people try to use insuf-
ficiently consistent environments: things work OK most of the time
because no “worker side only” objects are sent around,

Custom classes are also usually sent by reference, in the same way that
Python sends functions.

Todo: i think there’s a funcx approach to this that i could link to
that turns exceptions into strings, which are basic pickle data types we
should always be able to unpickle. see issue #3474. You lose the abil-
ity to catch specific exceptions (at least in the standard Python way).

6.4 Some objects don’t make sense to
send to other places

Objects that are “data like” make sense to pickle. An intuitive way
to think about “data like” is “could you write down the value of the
object on a piece of paper?”.

Some objects don’t represent that - for example a Thread object rep-
resents a running thread in a particular Python process. Ask yourself
what it means to pickle/unpickle that object into a different Python
process, perhaps on a different machine? Future is another example
of that, and maybe the most common to encounter when getting your
head around launching tasks inside other tasks (see join apps)

In between there are more interesting objects that try to do interesting
things with the serialization process .. ProxyStore is probably the most
interesting example of that.

See also:

I’ve talked about Pickle in more depth and outside of the Parsl context
at PyCon Lithuania: The Ghosts of Distant Objects

6.4. Some objects don’t make sense to send to other
places
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Serialising functions is a hard part of programming languages, espe-
cially in a language that wasn’t designed for this, and parsl is con-
stantly pushing up against those limits. have a look at https://www.
unison-lang.org/ if you’re interested in languages which are trying to
do this from the start.
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CHAPTER

SEVEN

MODULARITY AND PLUGINS

7.1 Motivation

7.1.1 why

Parsl exists as a library within the python ecosystem. Python exists as
a user-facing language, not an internal implementation language. Our
users are generally Python users (of varying degree of experience) and
we can make use of that fact.

structuring of code within the parsl github repo. “why” includes sus-
tainability work on different quality of code/maintenance. different
quality includes things like “this piece of code is well tested, or tested
by this environment”. different levels of support for different contri-
butions.

it’s also a place to plug in “policies” - that is user-specified decisions
(such as how to retry, using retry handlers) that take into account the
ability of our users to write Python code as policy specifications.

place for supporting other non-core uses: for example Globus Com-
pute makes use of the plugin API to use only htex and the lrm provider
parts of Parsl, and can do that because of the plugin API, where it be-
comes its own plugin host for the relevant plugins.

place for research/hacking - eg. want to do some research on doing X
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with workflows. Parsl has a role there as being the workflow system
that exists that you can then modify to try out X, rather than writing
your own toy workflow system. want to try out an idea. (example
for parslfest: matthew chungs work involved very minimal changes to
Parsl - including a new plugin interface! - for a nice outcome). two
things there: beneficial for the code to be modular (even within the
same repo) so that you only need to understand the pieces you want to
hack on, with less understanding needed of less relevant parts. ability
to share add-ons without people having to patch parsl (although in
reality that doesn’t really happen)

7.1.2 how

if there’s a decision point that looks like a multi-way if statement - hav-
ing a bunch of choices is a suggestion that choices you might not have
implemented might also exist, and someone might want to put those
in. various plugin points then look like “expandable if” statements. a
good contrast is the launcher plugin interface, vs the hard-coded MPI
plugin interface (cross reference issue to fix that), described in the
context of pluggability and needing to modify parsl source code.

use the phrase “dependency injection”

7.1.3 rest

this is an architectural style rather than an API

there have been a few places in earlier sections where i have talked (in
different ways) about plugging in different pieces of code - the biggest
examples being providers and executors.

The big examples that lots of people encounter for this section are
providers, because this is a big part of describing the unique environ-
ment of each different system; and executors, because one of the ways
that other research groups like to collaborate with big code chunks is
by Contributing interfaces so Parsl’s DFK layer can submit to their
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own execution system rather than using the High Throughput Execu-
tor. The biggest example of that is Work Queue, but there are several
other executors in the codebase.

Doing that sort of stuff is what I’d expect as part of moving from being
a tutorial-level user to a power user.

7.2 An example: providers

[modularity example] In the blocks section, (TODO crossref) I showed
how different environments need different providers and launchers,
but that the scaling code doesn’t care about how those providers and
launchers do their work. This interface is a straightforward way to add
support for new batch systems, either in the Parsl codebase itself, or
following the interface but defined outside of the Parsl codebase.

who cares about what

the API

7.3 An example: retry policies

Python exceptions - a user knows more about the exceptions than in-
frastructure does. That’s why Python lets you catch certain exceptions
and deal with them in different ways.

Parsl propagates those exceptions to the user via the relevant
AppFuture, but by that time it’s too late to influence retries.

a simple policy: if i get a worker or manager failure, retry 3 times,
because this might be transient. if i get a computation failure (let’s say
divide by zero) then do not retry because i expect this is “permanent”.
this is something that doesn’t belong in the Parsl codebase: it is appli-
cation specific behaviour. So we’re using plugin concept here to allow
users to attach their application code into parsl in a way that cannot be
done through the main task interface.

7.2. An example: providers 65
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7.4 All the plugin points I can think of

Todo: for each, a sentence or two, and a source code reference

• executors - you’ve got a function and arguments and want to run
the function with the arguments. but probably somewhere else,
queued or managed in some way. That’s what an executor does,
by providing the DataFlowKernel with a submit call:

https://github.com/Parsl/parsl/blob/
3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/
executors/base.py#L80

80 @abstractmethod
81 def submit(self, func: Callable, resource_

→˓specification: Dict[str, Any], *args: Any,␣
→˓**kwargs: Any) -> Future:

The big example here is using Work Queue to get access to work
queue’s resource allocation language which is much more ex-
pressive than the high throughput executor’s worker slot mecha-
nism. There are other executors here too though, built on radical
pilot, flux, and task vine.

• providers - addressed in previous section

• launchers

• (scheduled for removal) Channels - so I won’t describe them

• retry handlers - this is a place to encapsulate user knowledge
about if a task should be retried, and if so how much. By default
the cost of a task retry is 1 unit.

https://github.com/Parsl/parsl/blob/
3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/config.
py#L113
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retry_handler: Optional[Callable[[Exception, TaskRecord],
float]]

A retry handler is a function like this:

def my_retry_handler(e: Exception, t:␣
→˓TaskRecord) -> float:

which is called by the Data Flow Kernel when a task execution
fails. It can look at both the exception from that failing task ex-
ecution, and at TaskRecord (including the function and argu-
ments) and decide in some application specific way how much
this should cost.

The standard example here is distinguishing between exceptions
that might be worth retrying (such as a crashed worker) and ex-
ceptions that are less likely to succeed if run a second time (for
example, some application reported calculation error)

• memoizer key calculator (id_for_memo)

When checkpointing to disk (as mentioned in Elaborating tasks
(page 33)), Parsl stores a record for each task that has been
completed. Each task is identified by a hash of the task argu-
ments (and some other stuff). On a re-run, the task is hashed
again and that hash is looked up in the checkpoint database.
It isn’t possible to compute a meaningful equality-like hash for
arbitrary Python objects. Parsl uses a single dispatch function
id_for_memo to compute meaningful equality hashes for sev-
eral built-in Python types, and this is the way to plug in hash
computation for other types.

Here’s an example from parsl/dataflow/memorization at line 61
which recursively defines how to hash a list. id_for_memo.
register can be called a user workflow script to register more
types.

61 @id_for_memo.register(list)
62 def id_for_memo_list(denormalized_list: list,␣

→˓output_ref: bool = False) -> bytes:
(continues on next page)
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(continued from previous page)

63 if type(denormalized_list) is not list:
64 raise ValueError("id_for_memo_list␣

→˓cannot work on subclasses of list")
65

66 normalized_list = []
67

68 for e in denormalized_list:
69 normalized_list.append(id_for_memo(e,␣

→˓output_ref=output_ref))
70

71 return pickle.dumps(normalized_list)

• file staging

I talked about file staging in Elaborating tasks (page 33),
with staging providers allowed to launch new tasks and re-
place the body function of a task. The Staging interface in
parsl/data_provider/staging.py provides methods to do that.

• default stdout/stderr name generation

• Rich dependency handling

Sometimes it is nice to pass arguments that are structures which
contain futures, rather than the argument directly being Futures
- for example, a list or dictionary of futures. Parsl’s default de-
pendency handling won’t see those futures hidden inside other
structures, and so will neither wait for them to be ready, not sub-
stitute in their values.

Parsl’s dependency resolver hook lets you add in richer
dependency handling by substituting in your own code
to find and replace Futures inside task arguments. As an
example, the DEEP_DEPENDENCY_RESOLVER defined in
parsl/dataflow/dependency_resolvers.py line 111 provides
an implementation which can be extended by type (like
id_for_memo above).
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Todo: ref back to Elaborating tasks (page 33) if I write that
section

• serialization - although as hinted at in Serializing tasks and re-
sults with Pickle (page 55), Pickle is also extensible and that is
usually the place to plug in hooks.

Todo: link to serialization interface, and to pickle documenta-
tion for pickle extensibility

• High Throughput Executor interchange man-
ager selectors - https://github.com/Parsl/parsl/blob/
3f2bf1865eea16cc44d6b7f8938a1ae1781c61fd/parsl/
executors/high_throughput/manager_selector.py - this is
the beginning of a plugin interface to choose how tasks and
worker pools are matched together in the interchange.
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