
Tracking File Provenance with Parsl

Doug Friedel
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

File Provenance
What is file provenance?

▪When a file was created

▪How a file was created

● By what function

● What input arguments were used

● What environment was used (e.g. conda packages, env vars)

▪What other functions used the file

File provenance gives you the information needed to recreate the file exactly, and
to know the entire history of a file within a workflow.

What Use is File Provenance?

Take an example:

▪You have a workflow
• Dozens of tasks
• Maybe it loops in time steps
• It produces numerous files
• You want to run it many times with different parameters

▪When looking at the results you want to know how a specific file was
produced.

▪ If you kept meticulous notes you could probably figure it out, but that
is a lot of work.

▪This is were file provenance comes into play.

File Provenance Tracking in Parsl

How do we track file provenance?

▪Utilized Parsl’s existing monitoring framework to:
• Identify files that were used as inputs and/or outputs
• Capture information (size, timestamps, etc.) about each file
• Capture what task created the file
• Capture what tasks used each file
• Capture the input arguments to each task
• Capture the Parsl execution environment (e.g. worker_init from Provider)

The existing Parsl monitoring visualization tool was modified to be able to view the
provenance information via a web interface.

Using File Provenance

Using file provenance is straight forward

▪ Just add to your config

from parsl.monitoring.monitoring import MonitoringHub

config = Config(executors=[...],
 Monitoring = MonitoringHub(hub_address=address_by_hostname(),
 hub_port=55055,
 monitoring_debug=True,
 resource_monitoring_enabled=True,
 resource_monitoring_interval=1,
 capture_file_provenance=True
)
)

Visualizing the Data
Visualizing the output of the file provenance tracking is straight forward

▪ It is incorporated in the parsl-visualize script from the monitoring
framework

Dynamically Created Files

One issue we came across are dynamically created files

▪A File which is created in an App and appended to the outputs
• This often happens when you don’t know how many files an App will produce
• Unfortunately Parsl does not “know” about these files, they will not be

transferred and cannot be used as inputs to another App

▪Our solution is the Dynamic File List

• It acts just like a list, but is also a Future

• It updates the Dataflow Kernel about new files

• Allows for Apps to rely on files that have no references at run time

Dynamically Created Files

An example
@python_app
def produce(outputs=[]):
 def analyze(i):
 f =
File(f'file://path/to/file{i}.l
og}')
 with open(f.filepath,
'w') as out:
 # do some kind of
anaylsis
 return f
 count = int(random() * 10)
 fl =
File(f'file://path/to/master.lo
g')
 outputs.append(fl)
 with open(fl.filepath, 'w')
as log:
 log.write(f'Producing
{count} files\n')
 for i in range(count):
 log.write(f"Running
analysis {i}\n")

outputs.append(analyze(i))

@python_app
def consume(inputs=[]):
 for i in
range(len(inputs)):
 with
open(inputs[i].filepath, 'r')
as inp:
 content =
inp.read()
 # do something with
the log content

outp = []
f = produce(outp)
r = consume(inputs=[outp[1:]])
r.result()

@python_app
def produce(outputs=[]):
 def analyze(i):
 f =
File(f'file://path/to/file{i}.l
og}')
 with open(f.filepath,
'w') as out:
 # do some kind of
anaylsis
 return f
 count = int(random() * 10)
 fl =
File(f'file://path/to/master.lo
g')
 outputs.append(fl)
 with open(fl.filepath, 'w')
as log:
 log.write(f'Producing
{count} files\n')
 for i in range(count):
 log.write(f"Running
analysis {i}\n")

outputs.append(analyze(i))

@python_app
def consume(inputs=[]):
 for i in
range(len(inputs)):
 with
open(inputs[i].filepath, 'r')
as inp:
 content =
inp.read()
 # do something with
the log content

dfl = DynamicFileList()
f = produce(dfl)
r = consume(inputs=[dfl[1:]])
r.result()

This material is based in part upon work supported by the
Department of Energy, National Nuclear Security
Administration, under Award Number DE-NA0003963.

Questions?

