Tracking File Provenance with Parsl

Doug Friedel

National Center for Supercomputing Applications

University of lllinois at Urbana-Champaign

National Center for

I Supercomputing Applications l: E E S
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII . :

File Provenance

What is file provenance?
= When a file was created
= How a file was created
. By what function
- What input arguments were used

. What environment was used (e.g. conda packages, env vars)

= What other functions used the file

File provenance gives you the information needed to recreate the file exactly, and
to know the entire history of a file within a workflow.

National Center for

I Supercomputing Applications l: E E S

What Use is File Provenance?

Take an example:

=You have a workflow
* Dozens of tasks
* Maybe it loops in time steps
* It produces numerous files
* You want to run it many times with different parameters

= When looking at the results you want to know how a specific file was
produced.

= If you kept meticulous notes you could probably figure it out, but that
is a lot of work.

= This is were file provenance comes into play.

National Center for

I Supercomputing Applications l: E E S

File Provenance Tracking in Parsl

How do we track file provenance?

= Utilized Parsl’s existing monitoring framework to:
* |dentify files that were used as inputs and/or outputs
* Capture information (size, timestamps, etc.) about each file
* Capture what task created the file
* Capture what tasks used each file
 Capture the input arguments to each task
* Capture the Parsl execution environment (e.g. worker_init from Provider)

The existing Parsl monitoring visualization tool was modified to be able to view the
provenance information via a web interface.

National Center for

I Supercomputing Applications l: E E S

Using File Provenance

Using file provenance is straight forward
= Just add to your config

from parsl.monitoring.monitoring import MonitoringHub

config = Config(executors=[...],
Monitoring = MonitoringHub(hub address=address by hostname(),
hub_port=55055,
monitoring_debug=True,
resource_monitoring_enabled=True,
resource_monitoring_interval=1,
capture_file_provenance=True

National Center for

I Supercomputing Applications l: E E S

Visualizing the Data

Visualizing the output of the file provenance tracking is straight forward
= |t is incorporated in the parsl-visualize script from the monitoring

framework
~~Parsl Workflows File Provenance Documentation
I Executor (fc9d1066-4f5e-11ef-b622- I
ef8c2e578b08)
o Environment label: local_htex
» Workflow id: provenance_test.py
e Address: None
e Provider: slurm
e Launcher: SrunLauncher
» Worker init: module load python3
» Used by Tasks:
Id Name
0 initialize
1 split_data
2345 process
National Center for

Supercomputing Applications 6 combine B E E S -
IIIIIIIIIIIIIIIIIIIIIIIIII -CHAMPAIGN ° ° ° ° oo

Dynamically Created Files

One issue we came across are dynamically created files

= A File which is created in an App and appended to the outputs
* This often happens when you don’t know how many files an App will produce

* Unfortunately Parsl does not “know” about these files, they will not be
transferred and cannot be used as inputs to another App

= Qur solution is the Dynamic File List
* |t acts just like a list, but is also a Future
* It updates the Dataflow Kernel about new files

* Allows for Apps to rely on files that have no references at run time

National Center for

I Supercomputing Applications l: E E S

Dynamically Created Files

An example

National Center for

@python_app
def produce(outputs=[]):

def analyze(i):

f =
File(f'file://path/to/file{i}.1
og}')

with open(f.filepath,
'w') as out:

do some kind of
anaylsis

return

count = int(random() * 10)

fl =
File(f'file://path/to/master.lo
g')

outputs.append(fl)

with open(fl.filepath, 'w')
as log:

log.write(f'Producing
{count} files\n')

for i in range(count):

log.write(f"Running
analysis {i}\n")

outputs.append(analyze(i)|l

Lo,

@python_app
def produce(outputs=[]):

def analyze(i):

f =
File(f'file://path/to/file{i}.1
og}')

with open(f.filepath,
'w') as out:

do some kind of

anaylsis
return f
count = int(random() * 10)
fl =

File(f'file://path/to/master.lo
g9')
outputs.append(fl)
with open(fl.filepath, 'w')
as log:
log.write(f'Producing
{count} files\n')
for i in range(count):
log.write(f"Running
analysis {i}\n")

outputs.append(analyze(i))

Supercomputing Applicati

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

fa tuuu_app
%@% consume (inputs=[]):

LAamn = -

@pythun_qpp
def consume(inputs=[]):

Lmn = -

CEESD

¢ o e O e O o e
o 0
o 0 [o 3o} [o 3o} ¢ O

Questions?

This material is based in part upon work supported by the
Department of Energy, National Nuclear Security
Administration, under Award Number DE-NAO0O03963.

National Center for

I Supercomputing Applications l: E E S

