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Challenges for Elastic Workflows

• Job abstraction rather 
than workflow-aware 
abstraction

• static resource 
allocation model

• Optimized for a few, 
long running 
applications 
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• Multiple stages with different 
requirements

• Interesting phenomenon may occur
• Current Approach: request maximum 

resources potentially wasting 
resources

Common Workflow DAGs, Adapted from Juve, 
G., Chervenak, A., Deelman, E., Bharathi, S., 
Mehta, G., & Vahi, K. (2013). Characterizing 
and profiling scientific workflows. Future 
generation computer systems, 29(3), 682-692.  

Elasticity in only some 
Workflow Managers like Parsl 
[1], not fully efficient

• Resources as block (jobs)
• Big job allocations may have 

long waiting time
• No finer control on elasticity
• Smaller blocks may help but
oSpanning same HPC applications 

across multiple jobs can get 
complicated
oUser limit on simultaneous jobs 

impacts, e.g. , ALCF’s Polaris allows by 
request only; max 100 jobs running/ 
accruing/ queued per-project

Computational needs of tasks 
in workflows might not be 
known when submitted

HPC Resource Managers 
(RMs) not suitable for 
workflows, let alone 
elastic



Can Process Management Interface for 
Exascale (PMIx) [2] help?
• Mediator between applications and RMs enabling 

implementation-independent interactions like flexible 
resource allocation
o PMIx_Allocation_request API 
o Expanding and shrinking Distributed Virtual Machine (DVMs) 

in PMIx Reference Runtime Environment (PRRTE) 
• MPI and PMIx standards advancing to support 

malleability features using PMIx [7]
o e.g., MPI Sessions, ParaStation MPI, Dynamic Processes With 

Process Sets
o Structure malleability into multiple layers, with clearly defined 

tasks and services for each layer  based on the PMIx
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Approach: Enhance Parsl to support workflow elasticity and 
develop a dynamic resource manager atop Slurm to create a 
Dynamic Resource Management Model for HPC platforms with 
finer granularity, both leveraging PMIx.

Figure from SC22 BoF: Charting the PMIx Roadmap

A multi-layer model of the system software on 
HPC systems subject to mastacklleability [7]



PMIx-Enabled Elasticity: Within Managers
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• Add or remove workers and nodes [3]
o PMIx-based Provider
o HTEX Manager initiating and executing resource 

changes either at user specified time or during 
different performance-based events like 
overprovisioning and underprovisioning

• Suitable when workers can spawn workflow 
task in remote nodes (shell out), like, 
@bash_app with prun, srun or mpirun
o Difficult for workflow containing @python_app
o How to launch just workers that can run python 

function from a manager located at one node to 
another node?
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Modest speedup on expansion and slowdown on shrinkage of nodes. 
Can Correct Under Provisioning and Over Provisioning.

Blast Workflow Results
from [3]
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Under Provisioning Case Over Provisioning Case



PMIx-Enabled Elasticity: Manager Level

• Adding or removing managers
• Every newly added resource has 

manager with workers bind to cores
• Applicable to workflow containing 

python apps
• Like Block elasticity of Parsl, instead 

of duplicating block for expansion, 
PMIxProvider can provide resource 
blocks in granular level where 
managers can be placed
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PMIx Based Manager Level Elasticity in Parsl



Malleable Scheduler

• Created workload with a combination of elastic and rigid jobs 
and ran in the elastic workflow system

• Blast and Synthetic Workflows and CloverLeaf [8] Application

• Hierarchical scheduling mechanism with a simple custom 
FIFO scheduler written in Python with a file-based 
communication mechanism between the scheduler and 
workflows to exchange resource change events [4]
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Dynamic Resource Management can improve Resource 
Utilization. 5
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Work in Progress…
 Open to Collaborations!

• Experiments with more real-world workflows Examol[5], 
and LANL’s ALF [6]

• Advanced PMIx based malleable resource manager and 
integration with Slurm

• Utilize more PMIx functionalities

Summary:
o Dynamic resource management promise to improve the system 

performance in terms of execution time and resource utilization
o Proof of concept for use of PMIx as common standard for 

workflows, applications and resource managers to facilitate 
operations in HPC systems

Future Work and Summary

Active Learning Framework [6]
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