
Dynamic Resource Management for Elastic
Scientific Workflows using PMIx/PRRTE

Rajat Bhattarai, Tennessee Tech University
rbhattara43@tntech.edu

September 27, 2024

Challenges for Elastic Workflows

• Job abstraction rather
than workflow-aware
abstraction

• static resource
allocation model

• Optimized for a few,
long running
applications

1

• Multiple stages with different
requirements

• Interesting phenomenon may occur
• Current Approach: request maximum

resources potentially wasting
resources

Common Workflow DAGs, Adapted from Juve,
G., Chervenak, A., Deelman, E., Bharathi, S.,
Mehta, G., & Vahi, K. (2013). Characterizing
and profiling scientific workflows. Future
generation computer systems, 29(3), 682-692.

Elasticity in only some
Workflow Managers like Parsl
[1], not fully efficient

• Resources as block (jobs)
• Big job allocations may have

long waiting time
• No finer control on elasticity
• Smaller blocks may help but
oSpanning same HPC applications

across multiple jobs can get
complicated
oUser limit on simultaneous jobs

impacts, e.g. , ALCF’s Polaris allows by
request only; max 100 jobs running/
accruing/ queued per-project

Computational needs of tasks
in workflows might not be
known when submitted

HPC Resource Managers
(RMs) not suitable for
workflows, let alone
elastic

Can Process Management Interface for
Exascale (PMIx) [2] help?
• Mediator between applications and RMs enabling

implementation-independent interactions like flexible
resource allocation
o PMIx_Allocation_request API
o Expanding and shrinking Distributed Virtual Machine (DVMs)

in PMIx Reference Runtime Environment (PRRTE)
• MPI and PMIx standards advancing to support

malleability features using PMIx [7]
o e.g., MPI Sessions, ParaStation MPI, Dynamic Processes With

Process Sets
o Structure malleability into multiple layers, with clearly defined

tasks and services for each layer based on the PMIx

2

Approach: Enhance Parsl to support workflow elasticity and
develop a dynamic resource manager atop Slurm to create a
Dynamic Resource Management Model for HPC platforms with
finer granularity, both leveraging PMIx.

Figure from SC22 BoF: Charting the PMIx Roadmap

A multi-layer model of the system software on
HPC systems subject to mastacklleability [7]

PMIx-Enabled Elasticity: Within Managers

Slurm

Provider

PMIxProvider

SlurmProvider

Node 4

HTEX Manager

Resource

Change

Controller

Throughout

Monitor

Worker

Watchdog

prted

Node 3

prted

Node 2

prted

Node 1

prted

Resource Block

PRRTE DVMWorker Worker Worker

• Add or remove workers and nodes [3]
o PMIx-based Provider
o HTEX Manager initiating and executing resource

changes either at user specified time or during
different performance-based events like
overprovisioning and underprovisioning

• Suitable when workers can spawn workflow
task in remote nodes (shell out), like,
@bash_app with prun, srun or mpirun
o Difficult for workflow containing @python_app
o How to launch just workers that can run python

function from a manager located at one node to
another node?

Resources(Number of Nodes)

W
o

rk
fl

o
w

 E
x
e
c

u
ti

o
n

 T
Im

e
(s

)

0

500

1000

1500

2000

4(-4) 5(-3) 6(-2) 7(-1) 8(0) 9(+1) 10(+2) 11(+3) 12(+4)

Makespan with elasticity Makespan with rigid target nodes

Baseline Makespan with rigid 8 nodes

Modest speedup on expansion and slowdown on shrinkage of nodes.
Can Correct Under Provisioning and Over Provisioning.

Blast Workflow Results
from [3]

3

Under Provisioning Case Over Provisioning Case

PMIx-Enabled Elasticity: Manager Level

• Adding or removing managers
• Every newly added resource has

manager with workers bind to cores
• Applicable to workflow containing

python apps
• Like Block elasticity of Parsl, instead

of duplicating block for expansion,
PMIxProvider can provide resource
blocks in granular level where
managers can be placed

Node 3

prted

Worker Worker

HTEX Manager 3

Worker

Slurm

Provider

PMIxProvider

SlurmProvider

HTEX Manager 1

Node 2

prted

Node 1

prted

Resource Block 1

Worker Worker

Worker Worker

HTEX Manager 4

DataFlowKernel

Task Table
Dependecy

Check

Executor

Selection

Task

Future

Data

Manager

Scaling

Logic

Executor

Manager 2

Result

Handling

Node 4

prted

Block 2 Block 3

Initial Nodes Elastic Nodes

4

PMIx Based Manager Level Elasticity in Parsl

Malleable Scheduler

• Created workload with a combination of elastic and rigid jobs
and ran in the elastic workflow system

• Blast and Synthetic Workflows and CloverLeaf [8] Application

• Hierarchical scheduling mechanism with a simple custom
FIFO scheduler written in Python with a file-based
communication mechanism between the scheduler and
workflows to exchange resource change events [4]

Scheduler
Hostfile

Node 1

Node 2

Node NPolicy file

Job Queue

Slurm

Node 3

HTEX Manager Resource Change

Controller

prted

Node 2

prted

Node 1

prted

Resource Block 1

PRRTE DVMWorker Worker Worker

Trigger

Change Event

Workflow 1

Node 3

HTEX Manager Resource Change

Controller

prted

Node 5

prted

Node 4

prted

Resource Block 2

PRRTE DVMWorker Worker Worker

Trigger

Change Event

Workflow 2

Node Swapping

Workload

T
im

e

0

500

1000

1500

2000

Rigid Elastic Blast Workflow
(Expansion)

Elastic Synthetic
Workflow (Expansion)

Elastic Synthetic
Workflow (Shrinkage)

Dynamic Resource Management can improve Resource
Utilization. 5

6

Work in Progress…
 Open to Collaborations!

• Experiments with more real-world workflows Examol[5],
and LANL’s ALF [6]

• Advanced PMIx based malleable resource manager and
integration with Slurm

• Utilize more PMIx functionalities

Summary:
o Dynamic resource management promise to improve the system

performance in terms of execution time and resource utilization
o Proof of concept for use of PMIx as common standard for

workflows, applications and resource managers to facilitate
operations in HPC systems

Future Work and Summary

Active Learning Framework [6]

Acknowledgements: Howard Pritchard (Los Alamos National Laboratory), Sheikh Ghafoor, (Tennessee Tech
University)

References
1. Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and K.

Chard, “Parsl: Pervasive parallel programming in python,” in Proceedings of the 28th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 25–36. [Online]. Available: https://doi.org/10.1145/3307681.3325400

2. R. H. Castain, J. Hursey, A. Bouteiller, and D. Solt, “Pmix: Process management for exascale environments,” Parallel
Computing, vol. 79, pp. 9–29, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167819118302424

3. R. Bhattarai, H. Pritchard and S. Ghafoor, "Dynamic Resource Management for Elastic Scientific Workflows using
PMIx," 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), San Francisco, CA,
USA, 2024, pp. 686-695, doi: 10.1109/IPDPSW63119.2024.00131.

4. R. Bhattarai, H. Pritchard and S. Ghafoor, " Evaluation of a Dynamic Resource Management Strategy for Elastic Scientific
Workflows” Europar 2024 Workshop (Accepted)

5. https://github.com/exalearn/ExaMol
6. Smith, J.S., Nebgen, B., Mathew, N. et al. Automated discovery of a robust interatomic potential for aluminum. Nat

Commun 12, 1257 (2021). https://doi.org/10.1038/s41467-021-21376-0

7. A. Tarraf et al. , "Malleability in Modern HPC Systems: Current Experiences, Challenges, and Future Opportunities," in IEEE
Transactions on Parallel and Distributed Systems, vol. 35, no. 9, pp. 1551-1564, Sept. 2024, doi:
10.1109/TPDS.2024.3406764.

8. Mallinson, A.C., Beckingsale, D.A. , Gaudin, W.P., Herdman, J.A., Levesque, J.M., & Jarvis, S.A. (2013). CloverLeaf: Preparing
Hydrodynamics Codes for Exascale

7

https://doi.org/10.1145/3307681.3325400
https://www.sciencedirect.com/science/article/pii/S0167819118302424
https://github.com/exalearn/ExaMol

	Slide 1: Dynamic Resource Management for Elastic Scientific Workflows using PMIx/PRRTE
	Slide 2: Challenges for Elastic Workflows
	Slide 3: Can Process Management Interface for Exascale (PMIx) [2] help?
	Slide 4: PMIx-Enabled Elasticity: Within Managers
	Slide 5: PMIx-Enabled Elasticity: Manager Level
	Slide 6: Malleable Scheduler
	Slide 7
	Slide 8: References

