

Federated Numerical Weather Prediction Workflows with MPAS

Christopher W. Harrop & Naureen Bharwani

ParslFest - Sep 26-27, 2024

Our Collaborators

This work is funded by the NOAA Software Engineering for Novel Architectures (SENA) Program*

In collaboration with U.S. Department of Energy, University of Chicago, & Parallel Works (funded by DOE Small Business Innovation Research)

Special thanks to:

- Eric Schnepp (NOAA/GSL/ITS/RDHPCS)
- Stefan Gary (Parallel Works)
- Kyle Chard, Yadu Babuji, and Ben Clifford (University of Chicago / ANL)

*NOAA cooperative agreement NA220AR4320151

Emerging Technologies + NWP

We face two main workflow challenges:

- Scale of problems we want to investigate (we need > 1M cores)
 - No single environment is large enough to contain the computations we want to run
 - \circ < 4 Km global simulations, digital twins & ML training data
 - 100+ ensemble members

• **Diversity** of emerging technologies, applications, and compute environments

- No single environment has all the resources we require
- CPUs, GPUs, TPUs, Quantum processors & Intel, AMD, NVIDIA, ARM
- Proprietary data stores, Data lakes, NVRAM, test systems

Diversification & Scale \rightarrow Federated Workflows

Our Vision: Diversified **federated** workflows to enable NWP HPC/ML Research

Federated Compute & Automation Services

Collaboration \rightarrow Key Developments for NOAA

- RDHPCS / Globus teams working toward mutual plan for security to enable use of Globus Compute Endpoints on NOAA on-prem (ongoing, long-term)
- Direct support for MPI applications in Parsl (done ✓)
 - New MPIExecutor
- Direct support for MPI applications in Globus Compute (done /)
 New Globus MPIEngine

 \rightarrow Removal of Flux & associated complexities from Chiltepin stack (done \checkmark)

Introduction to Chiltepin

Chiltepin \rightarrow A Python Library for Building Federated NWP Workflows

- Creation of NWP workflow "endpoints"
- Configuration of resource pools on multiple systems
- Encapsulation of NWP task configuration & execution
- Wrap uwtools as federated Parsl & Globus Compute workflow tasks
- Workflows are Python programs

uwtools \rightarrow A Python Package to automate common NWP workflow tasks

- Configuration management
- Multi-stage drivers for UFS model components
 - Provisioning of run environment
 - Execution of binaries

Workflow Tasks May Also Be Mini-Workflows

Chiltepin Workflows

Run ungrib
ungrib = wps.ungrib(config, cycle_iso, ...)

Run the forecast
mpas_forecast = mpas.mpas_forecast(config, cycle_iso, mpas_init_lbcs, ...)

Chiltepin CI Testing With Containers

Looking Ahead - ML/AI

- Globus Flows?
- Move data to where it's needed
- Deploy compute on optimal resources (e.g. NVIDIA H100s)

Questions / Discussion

