
Parsl: Decorators
and Function
Parameters
Arha Gatram
Dr. Douglas N. Friedel

What happens?
• Look at this code

• Should these function calls have the same or different behavior?

• The two function calls should have the same result

• In the second call, the argument should

automatically bind to the keyword argument

• Instead, we get an error: TypeError: wait() got multiple

values for argument ‘walltime’

• So what gives?

• Let’s dive into how Parsl works under the hood

Strange Behavior

How does Parsl parallelize a function?
• Uses the Python construct of

decorators, but not quite

• Parsl actually gives you an object, but

still defines a decorator function

• Gives you the syntax sugar, but allows

for some additional internal processing

• How does it still work like a function?

Classes as Functions
• In C++ you might overload the operator()

• In Python you can define a special class method

__call__ which does essentially the same thing

• But how do we match this to a function signature

that we only know at runtime?

• Take in (*args, **kwargs)

• Parsl has certain “special parameters”

• There’s some introspection that Parsl does to handle these

differently than normal parameters

• This introspection is why Parsl returns a class

• The constructor looks through the parameters in the

signature for these special parameters and registers them

What’s the deal with walltime?

Is that really necessary?
• If these special parameters have default values, they would

only be reconciled when you call the original function

• The __call__ resolves into a call to the DataFlowKernel which

passes the function and parameters along

• This will change behavior according to those special

parameters, so you need this introspection

• The internal processing stores a dictionary of default arguments for special

keywords

• This is updated for **kwargs passed in so that the introspection has access to it

• But if the parameter is not passed in as a keyword argument, it’s passed in

through *args

• When the function is finally called, the parameter is bound to whatever is passed

in with *args but also has the default value added to **kwargs

Where’s the bug?

Moral of the Story
• This is fixable if you do binding earlier in the process with

inspect.signature.bind functionality

• This would still require significant refactoring of how Parsl handles

these special keyword arguments

• Bind considers only **kwargs as actual keyword arguments so

what we were doing earlier are considered default arguments

which get resolved to regular arguments

• Extra work to find special parameters now, so still problematic

Thank you! Questions?

