Parsl: Decorators
and Function
Parameters

Arha Gatram
Dr. Douglas N. Friedel

Il ILLINOIS

NCSA | National Center for
Supercomputing Applications

What happens?

* Look at this code

 Should these function calls have the same or different behavior?

apython_app

def wait(walltime=1):
import time
time.sleep(2)
return "success!”

future = wait(walltime=3)
print(future.result())

future = wait(3)
print(future.result())

1T ILLINOIS NCSA

Strange Behavior
* The two function calls should have the same result

* In the second call, the argument should

automatically bind to the keyword argument

* Instead, we get an error: TypeError: wait() got multiple

values for argument ‘walltime’

* So what gives?

e Let’s dive into how Parsl works under the hood

X ILLINOIS NCSA

How does Parsl parallelize a function?

e Uses the Python construct of

def python_app(function: Optional[Callable] = None,

deCOFatOFS, bUt nOt qUIte def decorator(func: Callable) -> Callable:
def wrapper(f: Callable) -> PythonApp:
e Parsl actually gives you an object, but rebra eyEhonapp(f,

data flow kernel=data flow kernel,

cache=cache,

still defines a decorator function P S—

ignore for cache=ignore for cache,
* Gives you the syntax sugar, but allows - Jornckalsel
return wrapper(func

if function is not None:

for some additional internal processing e

return decorator

e How does it still work like a function?

1T ILLINOIS NCSA

Classes as Functions

In C++ you might overload the operator()

In Python you can define a special class method

__call __ which does essentially the same thing

But how do we match this to a function signature

that we only know at runtime?

Take in (*args, **kwargs)

X ILLINOIS NCSA

What’s the deal with walltime?

* Parsl has certain “special parameters”

* There’s some introspection that Parsl does to handle these

differently than normal parameters
e This introspection is why Parsl| returns a class

* The constructor looks through the parameters in the

signature for these special parameters and registers them

1T ILLINOIS NCSA

Is that really necessary?

* |If these special parameters have default values, they would

only be reconciled when you call the original function

e The call resolves into a call to the DataFlowKernel which

passes the function and parameters along

* This will change behavior according to those special

parameters, so you need this introspection

X ILLINOIS NCSA

Where’s the bug?

* The internal processing stores a dictionary of default arguments for special

keywords
* This is updated for **kwargs passed in so that the introspection has access to it
* But if the parameter is not passed in as a keyword argument, it’s passed in
through *args
* When the function is finally called, the parameter is bound to whatever is passed

in with *args but also has the default value added to **kwargs

1T ILLINOIS NCSA

Moral of the Story

* This is fixable if you do binding earlier in the process with

iInspect.signature.bind functionality

* This would still require significant refactoring of how Parsl| handles

these special keyword arguments

* Bind considers only **kwargs as actual keyword arguments so
what we were doing earlier are considered default arguments

which get resolved to regular arguments

* Extra work to find special parameters now, so still problematic

X ILLINOIS NCSA

Thank you! Questions?

1T ILLINOIS NCSA

