
Seesaw
Elastic Scaling for Task-Based Distributed
Programs

Matthew Chung

Current Implementation

2

● Random selection from list of available
nodes

● First in, first out queue for tasks

● Good workload distribution

● Poor elastic resource provisioning

Updated Implementation

3

● Two queues for tasks

○ Priority runtime-based queue

○ Original FIFO queue

● Sorted list of ready nodes

● Improved scaling behavior

● Higher resource utilization

Testing Methodology

▪ Tested two different types of workloads: Cholesky Factorization and Synthetic
▪ Cholesky Factorization:

� Representation of a dataflow based workflow
� Varying influx of tasks over time
� Run through TaPS

▪ Synthetic:
� Representation of a bag-of-tasks workload
� 3,000 sleep tasks with runtimes between 0 and 140 seconds
� Log-normal right skew distribution

4

Cholesky Results - Random

Cholesky Results - Seesaw

Synthetic Distribution

Synthetic Results

Analysis

▪ Cholesky Factorization:
� Significant improvement in ability to scale down
� Similar time-to-solution
� Reduction in compute resource usage, increase in utilization

▪ Synthetic:
� Node sorting does not have much effect
� Task sorting greatly improves time-to-solution
� Utilization remains high in both methods

9

Next Steps

▪ Modular task labeling system

▪ Testing other workloads

▪ Guide/documentation update for new features

10

Questions?
Thank you for listening!

