SeesaW Elastic Scaling for Task-Based Distributed Programs

Matthew Chung

Current Implementation

- Random selection from list of available nodes
- First in, first out queue for tasks
- Good workload distribution
- Poor elastic resource provisioning

Updated Implementation

Testing Methodology

- Tested two different types of workloads: Cholesky Factorization and Synthetic
- Cholesky Factorization:
 - □ Representation of a dataflow based workflow
 - Varying influx of tasks over time
 - Run through TaPS
- Synthetic:
 - Representation of a bag-of-tasks workload
 - 3,000 sleep tasks with runtimes between 0 and 140 seconds
 - □ Log-normal right skew distribution

Cholesky Results - Random

UCR

Cholesky Results - Seesaw

Synthetic Distribution

Synthetic Results

Analysis

Cholesky Factorization:

- □ Significant improvement in ability to scale down
- □ Similar time-to-solution
- Reduction in compute resource usage, increase in utilization

• Synthetic:

- □ Node sorting does not have much effect
- □ Task sorting greatly improves time-to-solution
- Utilization remains high in both methods

Next Steps

- Modular task labeling system
- Testing other workloads
- Guide/documentation update for new features

Questions? Thank you for listening!

