

MPI support In Parsl and Globus Compute

Yadu Babuji (Parsl and Globus Compute team)

MPI, why is it so hard!

Batch Job

MPI App

Batch Job

MPI App

MPI App

MPI App

Batch Job

MPI App

MPI App

MPI App

Easy

MPI support is here in Parsl!

Batch Job (8 nodes)

MPI App (nodes=1)

Idle (nodes=1)

MPI App (nodes=2)

MPI App (nodes=2)

MPI App (nodes=2)

Batch Job (8 nodes)

MPI App (nodes=4)

MPI App (nodes=2)

MPI App (nodes=2)

Batch Job (8 nodes)

MPI App (nodes=4)

MPI App (nodes=4)

MPI in Parsl

```
ompi_executor.py
       config = Config(
           executors=[
               MPIExecutor(
   3
                   address=address_by_interface('bond0'),
                   max_workers_per_block=3, # Assuming 2 nodes per task
   5
                   provider=PBSProProvider(
   6
                       account="parsl",
   8
                       worker_init=f"""module load miniconda; source activate /lus/eagle/projects/parsl/env""",
   9
                       walltime="1:00:00",
  10
                       queue="debug",
  11
                       scheduler_options="#PBS -l filesystems=home:eagle:grand",
                       launcher=SimpleLauncher(),
  12
                       select_options="ngpus=4",
  13
  14
                       nodes_per_block=6,
  15
                       max_blocks=1,
  16
                       cpus per node=64,
  17
                   ),
  18
               ),
  19
  20
```

MPI in Parsl

```
⇔ mpiexecutor.py
       config = Config(executors = [
           MPIExecutor(
               label="Polaris.MPIExecutor",
               # Specify the number of MPI apps that can run concurrently in a block
   4
               max_workers_per_block=6,
   5
               # Specify the mpi launcher type from (srun, aprun, mpiexec)
   6
               mpi_launcher='mpiexec',
   8
               provider=PBSProProvider(
   9
                   account="parsl",
  10
                   worker_init=f"""module load miniconda; source activate /lus/eagle/projects/parsl/env""",
                   walltime="1:00:00",
  11
  12
                   queue="debug",
                   scheduler_options="#PBS -l filesystems=home:eagle:grand",
  13
                   launcher=SimpleLauncher(),
  14
                   select_options="ngpus=4",
  15
  16
                   nodes per block=6,
  17
                   max blocks=1,
  18
                   cpus_per_node=64,
  19
  20
  21
      ])
```

MPI in Parsl

```
oparsl_mpi_app.py
       @bash_app
       def lammps_mpi_application(infile: File, parsl_resource_specification: Dict):
   3
           # PARSL_MPI_PREFIX will resolve to `mpiexec -n 4 -ppn 2 -hosts NODE001, NODE002`
           return f"$PARSL_MPI_PREFIX lmp_mpi -in {infile.filepath}"
   5
       # Resources in terms of nodes and how ranks are to be distributed are set on a per app
       # basis via the resource_spec dictionary.
       resource spec = {
           "num_nodes": 2,
           "ranks_per_node": 2,
  10
           "num ranks": 4,
  11
  12
  13
  14
       future = lammps_mpi_application(File('in.file'), parsl_resource_specification=resource_spec)
```

MPI Support in Globus Compute: ShellFunctions

```
shell_function.py

1  from globus_compute_sdk import ShellFunction, Executor
2
3  ep_id = "<SPECIFY_ENDPOINT_ID>"
4  # The cmd will be formatted with kwargs at invocation time
5  bf = ShellFunction("echo '{message}'")
6  with Executor(endpoint_id=ep_id) as ex:
7  for msg in ("hello", "hola", "bonjour"):
8  future = ex.submit(bf, message=msg)
9  shell_result = future.result() # ShellFunctions return ShellResults
10  print(shell_result.stdout)
```

Ref: https://globus-compute.readthedocs.io/en/latest/executor.html#shell-functions

MPI Support in Globus Compute: MPIFunctions

Ref: https://globus-compute.readthedocs.io/en/latest/executor.html#shell-functions