

Motivation

p When executing distributed scientific workflows
l funcX

Pros: Easy to build a distributed computing resource pool
Cons: Independent execution, manual data staging, limitations of input/output size

l Parsl
Pros: Support the DAG workflow, data staging (e.g. FTP, HTTP)
Cons: Complicated to execute workflows on distributed CI simultaneously

p What about funcX as an executor of Parsl?
l Things can be resolved immediately

easy to program (in Parsl’s way), distributed execution

l Things to be resolved
data management, performance (scheduling)

p Executing scientific workflows across cyberinfrastructure(CI)
amortizing queue times, distributed data, specialized accelerator etc.

Programming and Architecture

funcX
federated FaaS Platform

Update

periodically

UniFaaS

DAG generator

Scheduler

UniFaaS interface

Submit Result

Config interface

Task
executor

funcX client interface

Task
submit

Result
polling

Task
status

Endpoint
status

Profilers

Task
profiler

Transfer
profiler

Data
manager

Monitors

Task
monitor

Endpoint monitor
...Mock Mock

Logging

Transfer
request

Local
store

Endpoint 1

Worker

Endpoint 2

Worker

Endpoint N

Worker
......

: a shim layer to wrap data and R/W ops.

UniFaaS architecture

: a decorator like @python_app in Parsl

UniFaaS Scheduling
Goal: to minimize workflow’s makespan

Challenges: varying data staging time, dynamic resource capacity.

…

… …

… …

Task id
Execution time
Transfer time
In-degree
Out-degree

DAG analysis

Task
profiler

Transfer
profiler

Sort by priority

… Task with information

……

Task
monitor

high

low

Data staging queue

EM1

EM2

EM3

Remote
EP1

Periodic task stealingGreedy selection Task dispatch

Control flow

Remote
EP2

Remote
EP3

DM1

DM2

DM3

Task with data staging finishedReady task Task with pending dependencies

Dynamic heterogeneity-aware scheduling (DHA in short)

Intuition:
• Data staging problem: start it as early as possible
• Dynamic resource capacity : real-time scheduling

UniFaaS Scheduling
Goal: to minimize workflow’s makespan

Challenges: varying data staging time, dynamic resource capacity.

…

… …

… …

Task id
Execution time
Transfer time
In-degree
Out-degree

DAG analysis

Task
profiler

Transfer
profiler

Sort by priority

… Task with information

……

Task
monitor

high

low

Data staging queue

EM1

EM2

EM3

Remote
EP1

Periodic task stealingGreedy selection Task dispatch

Control flow

Remote
EP2

Remote
EP3

DM1

DM2

DM3

Task with data staging finishedReady task Task with pending dependencies

Dynamic heterogeneity-aware scheduling (DHA in short)

Intuition:
• Data staging problem: start it as early as possible
• Dynamic resource capacity : real-time scheduling

UniFaaS Scheduling
No prior knowledge

• Locality-aware scheduling for dynamic resource capacity
schedule based on real-time status (real-time)

• Capacity-aware scheduling for static resource capacity
schedule when the DAG enters our system (offline)

Experiment

Scheduling

< 1 ms

Data
management

Submission

Result polling Remote
execution

174 ms

Result
logging

< 1 ms < 1 ms

< 1 ms

td = 726 ms tsub = 4 ms

117 ms

te = 62 ms< 1 msth = 2 ms

Latency

One ”hello world” task with a 1 MB input
totally costs 1087 ms.

All algorithms have a modest overhead.

Experiment
Scalability

Scalability of 5-second tasks is close to the ideal for up to 12 endpoints
longer-duration tasks, better scaling

Experiment
Case study

1. DHA has the best performance and highest worker utilization.
2. Improved performance by 22.99%, while utilizing only an additional 19.48% of resources.

Execute the drug screening workflow under static resource capacity.

Questions?
Yifei Li
12232396@mail.sustech.edu.cn

Experiment
Case study: dynamic capacity
1. DHA has the best performance.
2. Locality is better than DHA without re-scheduling.

Execute the drug screening workflow under dynamic resource capacity.

