
Kevin Hunter Kesling – kevin@globus.org

October 20, 2023

Multi-User Endpoints

1

1

- Reminder of “normal endpoints”
- Configure
- Start (which we interpret at the web-services as “register”)
- Use the printed uuid identifier in your SDK scripts
- “Oh wait, I need to change that configuration because [reason]”
- Log in, change the configuration, restart
- “Oh shoot, the cluster has been restarted”
- Log in, start the endpoint afresh
- “Hmm …I need more than one configuration for my various workloads”
- Log in, and manage them ad-hoc

- … And so forth; for many folks, it’s not uncommon to have multiple
configurations, that each need to be managed

What is a Multi-User Compute Endpoint?

2

- Reminder of “normal endpoints”
- Configure
- Start (which we interpret at the web-services as “register”)
- Use the printed uuid identifier in your SDK scripts
- “Oh wait, I need to change that configuration because [reason]”
- Log in, change the configuration, restart
- “Oh shoot, the cluster has been restarted”
- Log in, start the endpoint afresh
- “Hmm …I need more than one configuration for my various workloads”
- Log in, and manage them ad-hoc

- … And so forth; for many folks, it’s not uncommon to have multiple
configurations, that each need to be managed

What is a Multi-User Compute Endpoint?

● Aside … hereafter:
○ MEP → Multi-User Endpoint
○ UEP → User Endpoint (“normal endpoint”)

3

- Reminder of “normal endpoints”
- Configure
- Start (which we interpret at the web-services as “register”)
- Use the printed uuid identifier in your SDK scripts
- “Oh wait, I need to change that configuration because [reason]”
- Log in, change the configuration, restart
- “Oh shoot, the cluster has been restarted”
- Log in, start the endpoint afresh
- “Hmm …I need more than one configuration for my various workloads”
- Log in, and manage them ad-hoc

- … And so forth; for many folks, it’s not uncommon to have multiple
configurations, that each need to be managed

What is a Multi-User Compute Endpoint?

● Aside … hereafter:
○ MEP → Multi-User Endpoint
○ UEP → User Endpoint (“normal endpoint”)

● In contrast to a “normal” compute endpoint, an MEP does not run tasks.

4

- Reminder of “normal endpoints”
- Configure
- Start (which we interpret at the web-services as “register”)
- Use the printed uuid identifier in your SDK scripts
- “Oh wait, I need to change that configuration because [reason]”
- Log in, change the configuration, restart
- “Oh shoot, the cluster has been restarted”
- Log in, start the endpoint afresh
- “Hmm …I need more than one configuration for my various workloads”
- Log in, and manage them ad-hoc

- … And so forth; for many folks, it’s not uncommon to have multiple
configurations, that each need to be managed

What is a Multi-User Compute Endpoint?

● Aside … hereafter:
○ MEP → Multi-User Endpoint
○ UEP → User Endpoint (“normal endpoint”)

● In contrast to a “normal” compute endpoint, an MEP does not run tasks.

● Instead, an MEP
○ starts UEPs
○ (Slightly more precisely, fork, drop privileges, exec)
○ Manages their lifecycle (okay, os.fork() and os.waitpid())

5

- Reminder of “normal endpoints”
- Configure
- Start (which we interpret at the web-services as “register”)
- Use the printed uuid identifier in your SDK scripts
- “Oh wait, I need to change that configuration because [reason]”
- Log in, change the configuration, restart
- “Oh shoot, the cluster has been restarted”
- Log in, start the endpoint afresh
- “Hmm …I need more than one configuration for my various workloads”
- Log in, and manage them ad-hoc

- … And so forth; for many folks, it’s not uncommon to have multiple
configurations, that each need to be managed

What is a Multi-User Compute Endpoint?

● Aside … hereafter:
○ MEP → Multi-User Endpoint
○ UEP → User Endpoint (“normal endpoint”)

● In contrast to a “normal” compute endpoint, an MEP does not run tasks.

● Instead, an MEP
○ starts UEPs
○ (Slightly more precisely, fork, drop privileges, exec)
○ Manages their lifecycle (okay, os.fork() and os.waitpid())

● Receives start UEP commands from the web-service

6

htop screen recording

7

PDF NOTE: Original presentation had a live screen recording, showing the values
updating in real time as “presentation-proof” that the software exists (if not yet
released). See speaker notes.

Video of original presentation linked via the ParslFest 2023 list of presentations.
 (https://parsl-project.org/parslfest/parslfest2023.html)

- Showing it in action on my laptop; a screen recording of htop so as “to prove”
that it exists, “really,” even though still in development. (“Nearly there!!!”)

- Key point is the main process has children – forked, and not double-forked –
and the children are not owned by root but by actual users on the system

- Tree is enforced – respect the admin, always.

8

How do we do it?

- Admin writes the main configuration
- Configuration will be run through the Jinja template engine
- Admin may export variables via the usual Jinja syntax ({{ variable_name|

filter1|filter2|... }})
- User need only specify the variables at submission time.

Admin Writes/Controls
engine:
 type: GlobusComputeEngine

 provider:
 type: SlurmProvider
 partition: cpu
 account: {{ ACCOUNT_ID }}

 launcher:
 type: SrunLauncher

 walltime: {{ walltime|default("00:30:00") }}

9

user_config_template.yaml

- Admin writes the main configuration
- Configuration will be run through the Jinja template engine
- Admin may export variables via the usual Jinja syntax ({{ variable_name|

filter1|filter2|... }})
- User need only specify the variables at submission time.

Admin Writes/Controls
engine:
 type: GlobusComputeEngine

 provider:
 type: SlurmProvider
 partition: cpu
 account: {{ ACCOUNT_ID }}

 launcher:
 type: SrunLauncher

 walltime: {{ walltime|default("00:30:00") }}

10

import globus_compute_sdk as GC

uep_conf = {
 "ACCOUNT_ID": "314159265",
 "walltime": "00:02:00"
}

with GC.Executor(
 endpoint_id=mep_id,
 user_endpoint_config=uep_conf
) as gce:
 fut = gce.submit(some_func)
 res = fut.result()user_config_template.yaml

User Script

- Admin writes the main configuration
- Configuration will be run through the Jinja template engine
- Admin may export variables via the usual Jinja syntax ({{ variable_name|

filter1|filter2|... }})
- User need only specify the variables at submission time.

Admin Writes/Controls
engine:
 type: GlobusComputeEngine

 provider:
 type: SlurmProvider
 partition: cpu
 account: {{ ACCOUNT_ID }}

 launcher:
 type: SrunLauncher

 walltime: {{ walltime|default("00:30:00") }}

11

import globus_compute_sdk as GC

uep_conf = {
 "ACCOUNT_ID": "543126688"
}

with GC.Executor(
 endpoint_id=mep_id,
 user_endpoint_config=uep_conf
) as gce:
 fut = gce.submit(some_func)
 res = fut.result()user_config_template.yaml

User Script

- The user still needs to be aware of the configuration pieces of interest
- “The abstraction is still leaky!”

- But less leaky.
- The user needs to know about less (SlurmProvider can be ignored by

user; only account_id matters)
- Key point: configuration of interest is closer to the SDK

codes that user them
- Not attached to an opaque uuid identifier

- Side note: observe that the admin can specify defaults,
meaning the user need not specify ALL variables. Just
the required one.

- N.B. if the user does not supply account_id, then
the UEP would still start up (valid YAML to have an
empty account_id) but the submission would fail

Two different configurations; same user!

12

Value-Add for Users

13

Value-Add for Users

● No need to maintain multiple endpoints for different
configurations

14

Value-Add for Users

● No need to maintain multiple endpoints for different
configurations

● Specify needs at task submission

15

Value-Add for Users

● No need to maintain multiple endpoints for different
configurations

● Specify needs at task submission

● No need to log in to the terminal

16

Value-Add for Site Administrators

17

Value-Add for Site Administrators

● Templatable User Endpoint Configurations (Jinja)
○ e.g., pre-choose SlurmProvider, PBSProvider; enforce limits

18

Value-Add for Site Administrators

● Templatable User Endpoint Configurations (Jinja)
○ e.g., pre-choose SlurmProvider, PBSProvider; enforce limits

● No orphaned user compute endpoints
○ Enforced process tree

○ Idle-endpoints are shutdown (per template configuration)

19

Value-Add for Site Administrators

● Templatable User Endpoint Configurations (Jinja)
○ e.g., pre-choose SlurmProvider, PBSProvider; enforce limits

● No orphaned user compute endpoints
○ Enforced process tree

○ Idle-endpoints are shutdown (per template configuration)

● Standard Globus Identity Mapping

20

Value-Add for Site Administrators

● Templatable User Endpoint Configurations (Jinja)
○ e.g., pre-choose SlurmProvider, PBSProvider; enforce limits

● No orphaned user compute endpoints
○ Enforced process tree

○ Idle-endpoints are shutdown (per template configuration)

● Standard Globus Identity Mapping

● Lower barrier for users
21

Current status

● We’re buttoning up a few details

● Have not yet written any documentation

● Looking for brave volunteers to give it go

22

Thank You!

● Questions?
● Comments?
● Synergistic thoughts?

23

