
Advances in HPC automation -
An update on the use of Parsl

in Parallel Works

Outline:

1. Parallel Works clusters

2. Parsl workflows (goals and stumbling blocks)

3. Parsl Jupyter notebooks

Parallel Works Clusters

Provision HPC SLURM clusters in the cloud:
● Same “feel” & performance as on-premise SLURM clusters

● Elastic & highly customizable

● Leverage cloud’s cost: performance & new hardware

● Choice of several clouds

Connect an on-premise SLURM cluster

Uniform API
Parsl workflows and

notebooks are
started the same
way in all clusters

To define a cluster simply click on the desired cluster type and fill in the configuration options

Users can activate these clusters with a power button in a uniform way

On-premise

Google Cloud

Uniform API for all clusters and SSH access from the user container to the controller (master) node of the cluster

PW API response. E.g.:
- Can query the PW API with the

pool name and get the IP
address of the controller node

How can we run Parsl in these
clusters?

Workflows

Launch workflows in two ways:

1. Web user interface on PW

2. Python PW Client
- CI/CD use case: GitHub action starts the job (with API key in repo secrets)

Launch workflow using the Web UI
1. Click on workflow thumbnail
2. Enter workflow parameters
3. Click execute → Generates the workflow command and arguments
4. Workflow command and arguments are executed in the user container

1

2

3

Launch workflow using the PW Client
1. Launch workflow with a Python script
2. Automation (e.g.: Github actions)

import sys

from client import Client

from client_functions import *

pw_user_host = sys.argv[1]

pw_api_key = sys.argv[2]

user = sys.argv[3]

resource_name = sys.argv[4]

wf_name = sys.argv[5]

wf_xml_args = json.loads(sys.argv[6])

c = Client('https://' + pw_user_host, pw_api_key)

start_resource(resource_name, c)

jid, djid = launch_workflow(wf_name, wf_xml_args, user, c)

on: [push]

jobs:
 test-pw-workflow:
 runs-on: ubuntu-latest
 name: test-pw-workflow-beluga
 steps:
 - name: run-workflow-beluga
 id: run-beluga
 uses: parallelworks/test-workflow-action@v5
 with:
 pw-user-host: 'beluga.parallel.works'
 pw-api-key: ${{ secrets.ALVAROVIDALTO_BELUGA_API_KEY }}
 pw-user: 'alvarovidalto'
 resource-pool-names: 'gcpslurmv2'
 workflow-name: 'singlecluster_parsl_demo'
 workflow-parameters: '{"name": "PW_USER"}'

PW Client use
case example

Github action
example

https://github.com/parallelworks/test-workflow-action

Goals for Parsl workflows:
- Moving from a custom modified Parsl to standard Parsl
- Parsl script runs in the user container in Parallel Works (not in the cluster)
- Run different Parsl apps in different clusters (including on-premise and

cloud)
- Share Parsl workflows with other users

Stumbling blocks:
1. Define Parsl configuration for the different resources. Point to PW pools by pool

name.
2. Manage python environment in the user container in PW and in the remote

resources. Parsl version needs to be compatible. Dependencies.
- Workflow may run in a different user container (shared) and/or in a different cluster

3. Establish port connections from the workers to the user container
- User container does not have direct access to worker ports

Dealing with the stumbling blocks

 Parsl workflow wrapper

1. Define Parsl configuration definition for the different resources:
- JSON configuration file
- PW API to get pool information by pool name:

- IP addresses and user name of the controller nodes
- Available worker ports

- SSHChannel to connect to the controller nodes
- Run in controller nodes: LocalProvider
- Run in compute nodes: SlurmProvider or LocalProvider + bash_app + srun (easier to reach ports)

USER /
DEVELOPER
CREATES JSON
CONFIGURATION

COMPLETED BY
THE PW API
BEFORE
EXECUTION

Parsl config executor label

Pool name in PW

1. Define Parsl configuration definition for the different resources:
- JSON configuration file
- PW API to get pool information by pool name:

- IP addresses and user name of the controller nodes
- Available worker ports

- SSHChannel to connect to the controller nodes
- Run in controller nodes: LocalProvider
- Run in compute nodes: SlurmProvider or LocalProvider + bash_app + srun (easier to reach ports)

JSON IS LOADED AND USED TO
DEFINE THE PARSL CONFIGURATION

2. Manage python environment in the user container in PW and in the remote resources. Parsl version needs to be
compatible. Dependencies.

- Python environment is defined in YAML or singularity definition files (better for ML applications)
- Can choose one per executor and another for the user container
- Parsl workflow wrapper optionally updates/installs the Python environment from these files

2. Manage python environment in the user container in PW and in the remote resources. Parsl version needs to be
compatible. Dependencies.

- Python environment is defined in YAML or singularity definition files (better for ML applications)
- Can choose one per executor and another for the user container
- Parsl workflow wrapper optionally updates/installs the Python environment from these files

Python
environment

Optional to install the Python
environment at runtime

Options:
1. Point executor to different python environment
2. Install the Python environment manually once
3. Workflow wrapper installs python environment

at runtime (INSTALL_CONDA=TRUE)

3. Establish port connections for workers
- Parsl workflow wrapper creates SSH tunnels for the worker ports before execution and cleans them after

execution
- Available port numbers are provided by the PW API

User container:
- Parsl
- SSHChannel
- LocalProvider

Controller nodes
- Parsl

Compute
Partitions

Worker ports
(SSH Tunnel)

SSH ACCESS
sbatch
srun

User container:
- Parsl
- SSHChannel
- SlurmProvider

Controller nodes
- Parsl

Compute
Partitions:

- Parsl
Worker ports
(SSH Tunnel)

SSH ACCESS
sbatch

Worker ports
(SSH Tunnel)

SSH ACCESS

SSH ACCESS

Jupyter Notebooks

Goals:
- Connect from the user container to the jupyter server
- Automate server launch

Approach:
- Jupyter server runs in the controller node of a slurm cluster
- Server port is forwarded to the user container → Only the server port is forwarded to the user container!

Limitations:
- Single cluster (multiple partitions) per Parsl job

User container

Controller node:
- Jupyter server
- Parsl
- SlurmProvider

Compute
Partitions:

- Parsl
Jupyter server port

(SSH tunnel)

SSH ACCESS Sbatch

Worker Ports

Approach:
- For automation, the Jupyter server is started by a PW workflow

Approach:
- When the server is ready it pops up in the PW interface
- Enter your password and connect to the server

Parsl
notebook on
the cluster

Approach:
- Send jobs to different

partitions using the
SlurmProvider

Approach:
- Kill jupyter server job

Thank You!

Potential next steps

● Implement failover in Parsl workflows

○ Associate multiple resources with a given Parsl app

○ Resources are ranked; if #1 fails, try #2…

● Streamline the definition of the Parsl configuration through

the web UI instead of editing the JSON file

