
DESC monitoring and performance

David Adams
BNL

September 13, 2022

Parsl and funcX fest 2022

Updated Sep 16, 2022

Overview
Table of contents

• See Jim’s preceding talk for overview of DESC production
• Performance evaluation software
• Example results
• Parsl issues for DESC
• Production model
• Production managers
• Conclusions

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 2

Performance evaluation software
Software developed to assess performance

• Github package desc-wfmon
• Extract results from parsl process monitoring DB

o Sum process data for each task to get the total CPU, memory, I/O, etc. as
a function of time

o Evaluate the latency between one task ending and the next beginning
• Parse logs from perf-stat

o Extract per-task CPU speed and IPS (instructions per cycle)
• Add system monitoring

o CPU utilization, memory usage, I/O collected at regular intervals
– These can be compared these sums over processes

• CPU-intensive parsl test task
o Each task configured to run for a specified nominal time

– Actually for a fixed number of instructions
o When multiple tasks are run, the nominal time is varied over a factor of

two so tasks don’t run in phase
• Notebooks to generate performance plots

o Including those shown here

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 3

https://github.com/LSSTDESC/desc-wfmon

Example results
Following pages show some example monitoring plots

• Configuration
o Parsl test task with an average of 20 sec/task

– Similar time obtained with DESC single-frame tasks

o Run on NERSC Perlmutter
– Grants exclusive use of one or more nodes of 128/256 physical/virtual cores

o Most of the python code is from installation on cvmfs
– LSST release

o WorkQueue executor with memory size/allocation to run 100 tasks/node
– Actual number of concurrent running tasks is less when parsl doesn’t keep up

• Each page shows two plots
o Top is one node
o Bottom is 16 nodes (so 16X as many tasks)

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 4

Example plots: Throughput

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 5

Launch rate much higher
than completion rate
Good.

Completion rate limited by
launch rate

Example plots: Processes and CPU

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 6

Single node has 90% of
Intended processes

With 16 nodes, we get 60% of intended processes

running tasks

running tasks weighted by CPU utilization

Example plots: Task run time and latency

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 7

Latency is 10% of run time—accounts for missing tasks

Latency is much higher due to insufficient launch rate

run time

latency
Task start

Task start

Parsl success
Parsl has been very useful for DESC

• Enables processing of image workflows at NERSC (and other sites)
o To date, simulated data mostly using Cori/haswell

• We will scale up in coming years
o Larger datasets (real data!)
o Switch to perlmutter: faster, more CPUs/node, more nodes

• Have been carrying studies to identify issues
o Added monitoring identify bottlenecks
o Some issues have been identified à

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 8

Parsl issues for DESC
1. Intrinsic latency

• This is about 2 sec, so 10% for our 20 second jobs
o Apparently due to WorkQueue python imports
o Better or worse if we change the file system where the code resides

2. Insufficient launch rate
• Limit is about 1000 concurrent processes here
• Twice as much with HighThroughput executor but still well below that required for

DESC for production with one parsl instance
3. Stalls

• There are periods where the running task count drops precipitously for 10s of
seconds (not shown here)

• Not yet understood—may be a NERSC file system issue
4. Task synchronization

• If tasks all start together and memory increases with run time, peak is much
higher than average memory and limits the # running tasks (not shown here)

5. Task variation
• Wide range of task run times can make it difficult to optimize throughput
• See Jim’s slide

6. Slow DAG creation
• Can be bottleneck before real processing starts

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 9

Production model
Production model to address these issues

• Single parsl instance will not be sufficient for DESC production
• Instead tailor the solution to our problem

o First visit frames are processed and then patches—see following figures
• Split production into (at least) two stages

o Single frame processing
– Simple DAG: Each CCD in each frame is processed independently

o Patch processing
– Each patch is processed independently
– First step is warping: finding the frame CCDs that overlap the patch

» Ensure these are processed before submitting job (instead of DAG)
• Address scaling with a hierarchical production system

o Top level production manager (PM) provides global view of production
– It submits jobs to job PMs

o Each job is a frame, patch or group of either
– Each job is an independent sub-DAG

o Natural to have one job PM/node

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 10

One example visit

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 11

LSST focal
plane
(189 CCDs)

49 patches
Per tract

Jim Chiang

Sky map

Focal plane visit

LSST/DESC workflow (from w_2022_10)

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 12

singleFrame
Tasks operating
on CCD visits

Task operating
on patches

Warp task
combines
multiple visits

Produce catalog of
galaxies, stars, etc.
for analysis

Raw data
enters here

Coadd adds the images
from different visits

DAG and sub-DAGs

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 13

……

… …

patch

singleFrame

Simplified view of
production DAG

40 M/yr

3M

Production managers
Top and job production managers (PMs)

• Have different requirements
• Both, either (or neither) might be parsl or parsl-based

Job PM
• Nice if job PM might create its own DAG(s)

o By running a user-supplied command
o Can parsl do this?

• Like for job PM to be dynamic
o I.e. be able to handle tasks that add sub-DAGS which are then appended to

the overall PM DAG
• Then it could operate in pull mode

o Go back to the Top PM and ask for more work as needed

Top PM
• Should be user (i.e. human) friendly and allows user to

o Submit new jobs
o Resubmit failed jobs
o Cancel running or waiting jobs
o Monitor waiting, running and completed jobs

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 14

Comments/conclusions
Learning how to best process DESC images

• Plan is to reprocess ~10% of LSST data
• Use NERSC Perlmutter

o Allocation of 1000 Perlmutter CPU-only nodes
• Current baseline is to use single parsl instance to carry out processing
• But it is a challenge to fill Perlmutter nodes

o Many DESC/LSST tasks only run for few 10s of seconds
o Unlikely single parsl instance can efficiently run DESC production at scale

• Proposed here a hierarchical model
o Job PM (production manager) running on each node
o Top PM distributing jobs (groups of frames or patches) to nodes
o Parsl at either level?
o FuncX to communicate between them?

• Plan to continue studies
o Demonstrate we cannot (or can) operate at scale with a single parsl

executor including optimizations in the coming months
o Demonstrate that distributed PMs addresses problems that arise

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 15

Thank you

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 16

Extras

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 17

Patch processing performance

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 18

Throughput for patch processing

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 19

Plot show throughput for patch processing
• assembleCoadd through makeObjectTable

Throughput and # running tasks by task type

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 20

We are not filling the node with 10 patches,
but a tract (49 patches) would get close

CPU utilization

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 21

Plot show CPU utilization
• Again, we need to run more than 10 patches to fill the node
• But memory prevents this à

Unused physical cores

Unused logical cores (OK?)

1 task/(physical core)

1 task/(logical core)

Memory usage

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 22

Plot shows memory usage
• Why the 20-40 GB difference between system and process sum?
• Even using the lower value, we will likely be memory limited and not

able to use all the physical cores

I/O

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 23

Plot show I/O vs. time
• Just a few times when rates are higher
• We might want to stagger the patches to smooth some of this

o Maybe fill with some of the other tasks

Monitoring schema

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 24

Parsl monitoring raw data
Table workflow has 1 rows and 10 columns
Column names:

object run_id
object workflow_name
object workflow_version
object time_began
object time_completed
object host
object user
object rundir
int64 tasks_failed_count
int64 tasks_completed_count

Table task has 2158 rows and 15 columns
Column names:

int64 task_id
object run_id
object task_depends
object task_func_name
object task_memoize
object task_hashsum
object task_inputs
object task_outputs
object task_stdin
object task_stdout
object task_stderr
object task_time_invoked
object task_time_returned
int64 task_fail_count

float64 task_fail_cost

Table try has 2158 rows and 11 columns
Column names:

int64 try_id
int64 task_id
object run_id
object block_id
object hostname
object task_executor
object task_try_time_launched
object task_try_time_running
object task_try_time_returned
object task_fail_history
object task_joins

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 25

Table node has 0 rows and 12 columns
Column names:

object id
object run_id
object hostname
object uid
object block_id
object cpu_count
object total_memory
object active
object worker_count
object python_v
object timestamp
object last_heartbeat

Table block has 559 rows and 6 columns
Column names:

object run_id
object executor_label
object block_id
object job_id
object timestamp
object status

Table status has 10220 rows and 5
columns
Column names:

int64 task_id
object task_status_name
object timestamp
object run_id
int64 try_id

Table resource has 3229 rows and 16 columns
Column names:

int64 try_id
int64 task_id
object run_id
object timestamp
float64 resource_monitoring_interval
int64 psutil_process_pid

float64 psutil_process_cpu_percent
float64 psutil_process_memory_percent
float64 psutil_process_children_count
float64 psutil_process_time_user
float64 psutil_process_time_system
float64 psutil_process_memory_virtual
float64 psutil_process_memory_resident
float64 psutil_process_disk_read
float64 psutil_process_disk_write
object psutil_process_status

I do 1 run

with 2158
tasks (jobs)

This table has data for each
process (task try) sampled at
regular intervals

Three try
states

Process level derived data

Table procsumDelta has 541 rows and 12 columns
Column names:

float64 timestamp
int64 nval
int64 nproc

float64 run_idx
float64 procsum_memory_percent
float64 procsum_memory_resident
float64 procsum_memory_virtual
float64 procsum_time_clock
float64 procsum_time_user
float64 procsum_time_system
float64 procsum_disk_read
float64 procsum_disk_write

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 26

This is derived from the resource table.
It sum contribution from all processes.

The times and disk I/O values are deltas—
the contribution for each interval rather
the the integral in the resource table.

Calculation is tricky and result is sometime
misleading because samplings do not have
the same phase for all processes and the
sampling is occasionally irregular.

System level monitoring data

D. Adams, BNL Parsl and funcX fest DESC monitoring and performance September 13, 2022 27

System monitor sample count: 619
System monitor columns:

time
cpu_count
cpu_percent
cpu_user
cpu_system
cpu_idle
cpu_iowait
cpu_time
mem_total
mem_available
mem_swapfree
dio_readsize
dio_writesize
nio_readsize
nio_writesize

All sampled at regular intervals
Every 5 sec for jobs here

